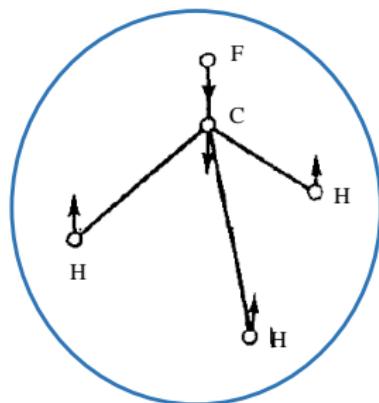
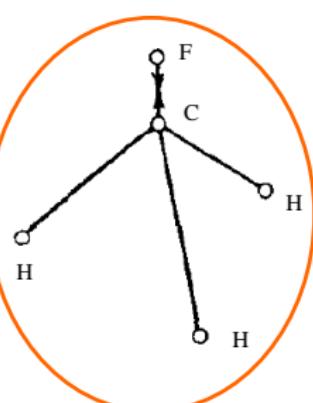
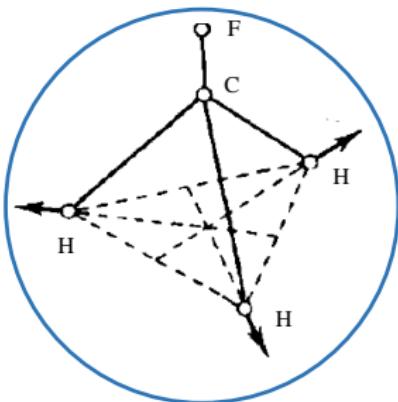


Molecular symmetry group II. Molecules CH_3F and CH_4

IRs for rotation levels are the same as for NH_3

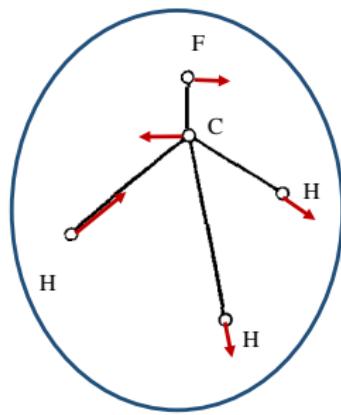
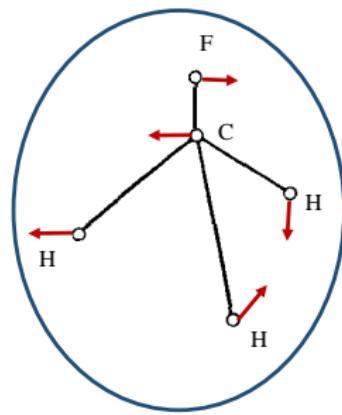
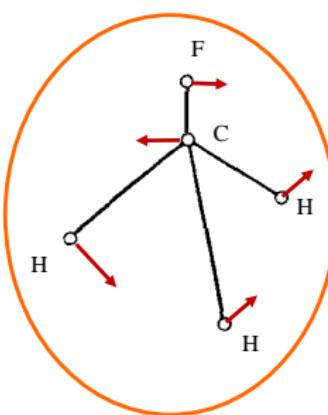
Non-degenerate vibrational modes with normal coordinates transformed $\sim A_1$ of C_{3v}



extension of vibr. modes of NH_3

present in CH_3F , but not in NH_3

Double-degenerate vibrational modes with normal coordinates transformed $\sim E$ of C_{3v}



For each of these modes, the second linearly independent set of displacements of nuclei is obtained by a rotation over $\pm 2\pi / 3$

Point group of the equilibrium configuration (MS group): T_d

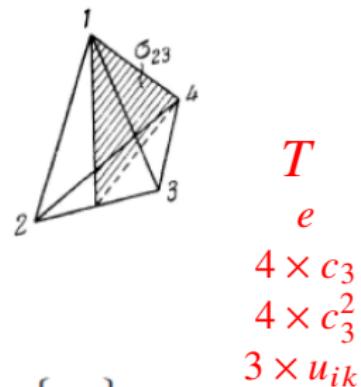
Group of symmetry of a tetrahedron.

All edges have
the same length

24 elements: 12 elements of the group T ;
6 reflections w. resp. to planes
 $\sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{23}, \sigma_{24}, \sigma_{34}$;
 $2 \times 3 = 6$ rotation-reflections
 s_4, s_4^3 around each of the
 three 2nd-order axes.

Five classes:

$\{e\}, \{c_3^{(i)}, c_3^{(i)2}\}, \{u_{ik}\}, \{s_4^{(ik)}, s_4^{(ik)3}\}, \{\sigma_{ik}\},$



of elements 1 + 8 + 3 + 6 + 6 = 24

with all relevant i, k within a class.

Characters of IRs of T_d

Five classes \Rightarrow five IRs

T_d	e	C_3	u	σ	S_4
A_1	1	1	1	1	1
A_2	1	1	1	-1	-1
E	2	-1	2	0	0
F_2	3	0	-1	1	-1
F_1	3	0	-1	-1	1

$$1^2 + 1^2 + 2^2 + 3^2 + 3^2 = 24$$

Full permutation-inversion group for CH₄

$$\mathcal{S}_4 \otimes \mathcal{I}$$

48 elements, 10 classes

\mathbf{G}_{48} :	E	(123)	$(14)(23)$	$(1423)^*$	$(23)^*$	E^*	$(123)^*$	$(14)(23)^*$	(1423)	(23)
	1	8	3	6	6	1	8	3	6	6
A_1^+ :	1	1	1	1	1	1	1	1	1	1
A_2^+ :	1	1	1	-1	-1	1	1	-1	-1	-1
E^+ :	2	-1	2	0	0	2	-1	2	0	0
F_1^+ :	3	0	-1	1	-1	3	0	-1	1	-1
F_2^+ :	3	0	-1	-1	1	3	0	-1	-1	1
A_1^- :	1	1	1	1	1	-1	-1	-1	-1	-1
A_2^- :	1	1	1	-1	-1	-1	-1	-1	1	1
E^- :	2	-1	2	0	0	-2	1	-2	0	0
F_1^- :	3	0	-1	1	-1	-3	0	1	-1	1
F_2^- :	3	0	-1	-1	1	-3	0	1	1	-1

“Non-realizable” operations

Omitting “non-realizable elements”: $A_1^\pm \mapsto A_1$ and so on

Rotational states for CH₄

Spherical rotor

|JKM⟩ states are degenerate not only w.r.t. M , but also w.r.t. K

For a given M : (2J + 1)-fold degeneracy w.r.t. K

J	Γ_r
12n	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_1$
12n + 1	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus F_1$
12n + 2	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus E \oplus F_2$
12n + 3	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_2 \oplus F_1 \oplus F_2$
12n + 4	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_1 \oplus E \oplus F_1 \oplus F_2$
12n + 5	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus E \oplus 2F_1 \oplus F_2$
12n + 6	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_1 \oplus A_2 \oplus E \oplus F_1 \oplus 2F_2$
12n + 7	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_2 \oplus E \oplus 2F_1 \oplus 2F_2$
12n + 8	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_1 \oplus 2E \oplus 2F_1 \oplus 2F_2$
12n + 9	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_1 \oplus A_2 \oplus E \oplus 3F_1 \oplus 2F_2$
12n + 10	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_1 \oplus A_2 \oplus 2E \oplus 2F_1 \oplus 3F_2$
12n + 11	$n(A_1 \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2) \oplus A_2 \oplus 2E \oplus 3F_1 \oplus 3F_2$

Normal vibrational modes for CH₄

CH₃F: three non-degenerate and three double-degenerate vibration modes

F→H: degeneracy “redistributed”

Number	ν_i (cm ⁻¹)	Description	IR
1	2917	sym. stretch	A_1
2	1534	sym. bend	E
3	3019	asym. stretch	F_2
4	1306	asym. bend	F_2

$$1 + 2 + 3 + 3 = 9$$

Nuclear spin functions

Co-ordinate w.f. $\sim (\{\lambda\} \otimes \mathfrak{g}) \oplus (\{\tilde{\lambda}\} \otimes \mathfrak{u})$

The total (co-ordinate and nuclear-spin) w.f.

$\sim (\{\lambda\}_c \otimes \{\lambda\}_s \otimes \mathfrak{g}) \oplus (\{\tilde{\lambda}\}_c \otimes \{\tilde{\lambda}\}_s \otimes \mathfrak{u})$ for bosonic nuclei;

$\sim (\{\lambda\}_c \otimes \{\tilde{\lambda}\}_s \otimes \mathfrak{g}) \oplus (\{\tilde{\lambda}\}_c \otimes \{\lambda\}_s \otimes \mathfrak{u})$ for fermionic nuclei.

For protons ($s = \frac{1}{2}$) there is one-to-one correspondence between the total nuclear spin I and the IR of the permutation group (the same I may appear several times, the states differing in other quantum numbers that reflect the coupling scheme).

For higher s , we need to perform analysis as follows.

Total nuclear spin for deuterium in CD_3F

Characters of IRs of \mathcal{S}_3

	e	(ij)	(ijk)
$\{3\}$	1	1	1
$\{2, 1\}$	2	0	-1
$\{1, 1, 1\}$	1	-1	1

$\textcolor{red}{M_I = 3}$: a single w.f. $|1, 1, 1\rangle$, which corresponds to the highest possible spin $I = 3$ and is invariant under any permutation, i.e. $\sim \{3\}$

$\textcolor{red}{M_I = 2}$: three w.f.'s $|1, 1, 0\rangle$, $|1, 0, 1\rangle$, $|0, 1, 1\rangle$

Characters of the corresponding reducible representation T_2 :

	e	(ij)	(ijk)
$\chi_2(P)$	3	1	0

According to the character theorem, $T_2 = \{3\} \oplus \{2, 1\}$

$\{3\}$ corresponds to $I = 3$ (obtained from $|3, 3\rangle$ by lowering M_I by 1)

$\{2, 1\}$ corresponds to $I = 2$, which appears here twice ($d_{\{2, 1\}} = 2$)

$M_I = 1$: vector space consisting of two subspaces,

$$|1, 0, 0\rangle, |0, 0, 1\rangle, |0, 1, 0\rangle$$

and $|1, 1, -1\rangle, |1, -1, 1\rangle, |-1, 1, 1\rangle$

$T_1 = 2T_2$, the table of characters for T_2 see above \Rightarrow

$$T_1 = 2\{3\} \oplus 2\{2, 1\}$$

1st w.f. $\sim \{3\}$ corresponds to $I = 3$

1st w.f. $\sim \{2, 1\}$ corresponds to $I = 2$ (twice!)

2nd w.f. $\sim \{3\}$ corresponds to $I = 1$

2nd w.f. $\sim \{2, 1\}$ corresponds to $I = 1$ (twice!)

$M_I = 0$: vector space consisting of two subspaces,

$|1, -1, 0\rangle$, $| - 1, 0, 1\rangle$, $|0, 1, -1\rangle$, $|1, 0, -1\rangle$, $|0, -1, 1\rangle$, $| - 1, 1, 0\rangle$
and $|0, 0, 0\rangle$ (invariant against permutations)

$$T_0 = T'_0 \oplus \{3\}$$

Characters of T'_0

	e	(ij)	(ijk)
$\chi'_0(P)$	6	0	0

$$T'_0 = \{3\} + 2\{2, 1\} + \{1, 1, 1\}$$

$$T_0 = 2\{3\} + 2\{2, 1\} + \{1, 1, 1\}$$

$\{3\}$ corresponds to $I = 3$ and $I = 1$

$\{2, 1\}$ corresponds to $I = 2$ (twice) and $I = 1$ (twice)

$\{1, 1, 1\}$ corresponds to $I = 0$

$M_I < 0$: the same structure as for $|M_I|$

$$\sum_{\{\lambda\}} \sum_I (2I + 1) = (2s + 1)^n, \quad 7 + 2 \times 5 + 3 \times 3 + 1 = 3^3$$