

Molecular symmetry group

II. Induced representations

We consider finite groups

A subgroup: $\mathcal{H} \subset \mathcal{G}$

Consider a representation T of \mathcal{G} : $g \mapsto \hat{T}(g)$ as a representation $T^{\mathcal{H}}$ of \mathcal{H} only by restricting ourselves to $g \in \mathcal{H}$

Then it can be decomposed in IRs Q^j of \mathcal{H} as

$$T^{\mathcal{H}} = \bigoplus_j m_j Q^{(j)}$$

$$m_j = \frac{1}{L_{\mathcal{H}}} \sum_{h \in \mathcal{H}} \chi_j^*(h) \chi_T(h)$$

$$\chi_j(h) = \sum_l Q_l l^{(j)}(h), \quad \chi_T(h) = \sum_i T_{ii}(h)$$

$L_{\mathcal{H}}$ = order of \mathcal{H}

The opposite task: to extend a representation Q of \mathcal{H} to \mathcal{G} , i.e., to construct an **induced representation**

First, recall that the ratio of the orders

$$Z = \frac{L_{\mathcal{G}}}{L_{\mathcal{H}}}$$

is an **integer number**

Expansion of the group in left cosets:

$\exists g_i \in \mathcal{G}, i = 1, 2, \dots, Z :$

$$\mathcal{G} = \bigcup_{i=1}^Z g_i \mathcal{H}, \quad g_1 \equiv e$$

$$(g_i \mathcal{H}) \cap (g_{i'} \mathcal{H}) = 0, \quad i \neq i'$$

Let the representation Q of \mathcal{H} be defined over the vector space $V_{\mathcal{H}}$.
The latter can be considered as a subset of a larger vector space, where
we can define $g_i V_{\mathcal{H}}$ for all $i = 1, 2, \dots, Z$ $(g_1 \equiv e)$
Then the induced representation is defined over

$$V_{\mathcal{G}} = \bigcup_{i=1}^Z g_i V_{\mathcal{H}}$$

Consider a group operation g acting on a $\mathbf{x} \in g_i V_{\mathcal{H}}$,
i.e., $\mathbf{x} = g_i \mathbf{y}$, $\mathbf{y} \in V_{\mathcal{H}}$
We find first, to which coset $g g_i$ belongs, i.e., we find g_j such that

$$g g_i = g_j h, \quad h \in \mathcal{H}$$

$$g g_i \mathbf{y} = g_j h \mathbf{y} = g_j \mathbf{y}', \quad \mathbf{y}' \in V_{\mathcal{H}} \Rightarrow g_j \mathbf{y}' \in g_j V_{\mathcal{H}}$$

This allows us to calculate all the matrix elements for all operators
 $\hat{T}(g)$ for the induced representation T .

Frobenius formula

expressing the character of the induced representation T via the character of Q :

$$\chi_T(g) = \sum_{\substack{g_i \in \mathcal{G}/\mathcal{H} \\ g_i^{-1}gg_i \in \mathcal{H}}} \chi_Q(g_i^{-1}gg_i) = \frac{1}{L_{\mathcal{H}}} \sum_{\substack{f \in \mathcal{G} \\ f^{-1}gf \in \mathcal{H}}} \chi_Q(f^{-1}gf)$$

Expansion of T in IRs T_j of \mathcal{G} is given by the character formula