
Molecular symmetry group
II. Induced representations



We consider finite groups
A subgroup: H ⊂ G
Consider a representation 𝑇 of G: 𝑔 ↦→ 𝑇 (𝑔) as a representation 𝑇H

of H only by restricting ourselves to 𝑔 ∈ H
Then it can be decomposed in IRs 𝑄 𝑗 of H as
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𝐿H = order of H



The opposite task: to extend a representation 𝑄 of H to G, i.e., to
construct an induced representation
First, recall that the ratio of the orders

𝑍 =
𝐿G
𝐿H

is an integer number
Expansion of the group in left cosets:
∃𝑔𝑖 ∈ G, 𝑖 = 1, 2, . . . , 𝑍 :

G =

𝑍⋃
𝑖=1

𝑔𝑖H , 𝑔1 ≡ 𝑒

(𝑔𝑖H) ∩ (𝑔𝑖′H) = 0, 𝑖 ≠ 𝑖′



Let the representation 𝑄 of H be defined over the vector space 𝑉H .
The latter can be considered as a subset of a larger vector space, where
we can define 𝑔𝑖𝑉H for all 𝑖 = 1, 2, . . . , 𝑍 (𝑔1 ≡ 𝑒)
Then the induced representation is defined over

𝑉G =

𝑍⋃
𝑖=1

𝑔𝑖𝑉H

Consider a group operation 𝑔 acting on a x ∈ 𝑔𝑖𝑉H ,
i.e., x = 𝑔𝑖y, y ∈ 𝑉H
We find first, to which coset 𝑔𝑔𝑖 belongs, i.e., we find 𝑔 𝑗 such that

𝑔𝑔𝑖 = 𝑔 𝑗ℎ, ℎ ∈ H

𝑔𝑔𝑖y = 𝑔 𝑗ℎy = 𝑔 𝑗y′, y′ ∈ 𝑉H ⇒ 𝑔 𝑗y′ ∈ 𝑔 𝑗𝑉H

This allows us to calculate all the matrix elements for all operators
𝑇 (𝑔) for the induced representation 𝑇 .



Frobenius formula

expressing the character of the induced respresentation 𝑇 via the
character of 𝑄:
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𝑔−1
𝑖
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Expansion of 𝑇 in IRs 𝑇𝑗 of G is given by the character formula


