Molecular symmetry group
II. Induced representations



We consider finite groups

A subgroup: H Cc G

Consider a representation 7 of G: g — T(g) as a representation 77
of H only by restricting ourselves to g € H

Then it can be decomposed in IRs Q7 of H as
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The opposite task: to extend a representation Q of H to G, i.e., to
construct an induced representation
First, recall that the ratio of the orders
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Expansion of the group in left cosets:
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N

G=| )aH, g1=e

i=1

(giH)N (g H) =0, i#1i’



Let the representation Q of H be defined over the vector space V.
The latter can be considered as a subset of a larger vector space, where
we can define g;Vy foralli=1,2, ..., Z (g1 =e)
Then the induced representation is defined over
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Consider a group operation g acting on ax € g;Vyy,

ie,x=gy, Y€Vu
We find first, to which coset gg; belongs, i.e., we find g; such that
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ggiy=gjhy=g;y, Y e€Vu = gjy €g;Vu

This allows us to calculate all the matrix elements for all operators
T'(g) for the induced representation 7.



Frobenius formula

expressing the character of the induced respresentation 7 via the
character of Q:
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Expansion of 7" in IRs 7; of G is given by the character formula



