XI11. Schwinger model for the angular
momentum operator

Consider two independent bosonic modes described by annihilation/creation operator
obeying the standard commutation relation:

e

[4,4']=1 [b,b']1=1 [4,b]=0, [4,b7]=0
Then one can show that the operators
~ ab+ba -~ 4&b-b'a . &4a-b'b
J = SN : J,
2 21 2
satisfy the commutation relation for the components of the angular momentum operator

3.,3.1=id,, [3,.3,1=i3,, [3,.3,1=id..

Also [j\g,jZ:ZO, €=X,y,Z, where

" 2 2

Eigenvalues N of N are non-negative integers» the momentum J = N/2 is half-integer >O0.

52552+j§+322:(N+1jN, G =8'4+6



Cyclic components A 1 A A~ A
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J, =—F raises M by 1,
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J, = @ lowers M by 1, where M is an eigenvalue of j
-2 Y J 0

Holstein—Primakoff transformation

Mapping of quantum ang.momentum to bosonic annihilation/creation operators.
Consider | J, M = +J > as a vacuum state and, respectively, m = J — M as the number of
excitations. Introduce formally bosonic operators ¢, ¢, [e.éf] =1

|J, M = J —m) = (m!)2 ™ |vac)
Then, recalling the expression for the matrix elements of cyclic components of J we obtain

. sta éle - R cle
1}0 — 1}_61-6:, 1 — \/_ C:, 1]_1 — = 1.)-( CT ]. - =
- 92J 2]
This transformation is especially convenient for the small number of excitations, m << J,
A-I- ~
c'c

where one can expand these expressions in Taylor series in .
2]



XIV. Quantum models to be mapped on

angular-momentum (problems |
(X1V.1) Two-mbde Bose-Hubbard model (ultracold atoms in

a double well potential — the simplest, 2-mode description)
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H= (U1+U2)T+(U1+Ug)§f+[AE+N(U1—Ug)]§Z—2J§I



(X1V.2) Dicke model

A two-level system consisting of two states, ground |g> and excited |e>, is formally
equivalent to a (pseudo)spin s = 1/2.

The raising operator _ 0 1
c' =S5 +i§, =
0 0
transformes |g> into |e>,
the lowering operator 0 0
o =§—i§, =
1 0

transforms |e> into |g>.
The operator of the population difference

. . (1 0
o, =25, =



Hamiltonian of N two-level system with a single electromagnetic mode (practically, with a

cavity mode). We denote the photon annihilation operator by ¢ .
If we assume that the atom-photon coupling constant is the same for all atoms, this

Hamiltonian reads as (we set Planck’s constant /2 = 1)

dﬁ:waa+§:pwﬂ+2gT+ 0)8y i)
i=1
Sum of individual spin operators yield the collective spin operator:

A

H = wila + wpS. + 2g(a' + a)S,

Since the e.m.-mode is close to the resonance, o = w,, we can use the rotating wave

approximation (RWA):
PP ( ) What is the integral of

motion of this
Hamiltonian?

H=wa'a+ wyS, +g(@'s™ +as™)

Note: the same coupling constant for all atoms may be attained for a ring (running-wave)
cavity; the phase factors exp (ikr;) for different atoms can be included into the definition of
le>.

The use of the Holstein-Primakoff transformation reduces the Hamiltonian to one for two
bosonic fields (atomic excitations and phonons). How this bosonic Hamiltonian looks if the
number of at.excitations + the number of photons << N? In the case of small number of
excitations and phonons write the Hamiltonian in the case of non-equal coupling constant
(each atom possessing its own g;).



But N pseudospins s = 1/ 2 may be summed in different ways.

If they form a fully simmetrized state, i.e., characterized by the Young diagram {N}, then we
obtain max.possible collective spin S = N/2.

In a general case, for the Young diagram {N —m, m}, where m < N/2, we obtain

S=N/2-m.

In particular, for an even N and m = N/2 (the Young diagram consisting of two rows of the
equal length) S=0.

The rate I of photon emission into the cavity mode is proportionalto (S~ S™)

If (almost) all atoms are in the |e> state, (‘;z) ~S ,then ['ox S .
When in the course of evolution, almost half of the atoms decayed into the state |g>, i.e.,

when (C;;,;) ~ ()  weobtain I o¢ S°.
The states with {1} = {N} and, hence, S = N/2 are called Dicke states. They are charcterized
by the maximum possible photon emission rate

(c;z) ~ N/2 mm) [ NV  Atomsemit photons independently.

(éz} ~ 0 ) [ N?  Collective (enhanced) emission — superradiance.

The opposite limit: states with {1} = {N/2, N/2} for even N and, hence, S = 0, do not emit into
the cavity mode at all. Do they emit into other modes (side modes)? Why?



Single-electron qubits: besides the pseudospin, there is the spin of electron
Wave function of N electrons:

antisymmetrization

1) = |pseudospin;) ® |location;) ® |spin;)

{Kloc} {}‘spin}

IR tensor product (Symmetric group Sy)

{Kpseudospin} {}\'pseudospin}
IR tensor product /(symmetric group S,)

M,1,1,..., 1= {1}
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