
Group theory and molecular spectroscopy.
II. Ammonia molecule



We determine the symmetry of the NH3 eigenstates with respect to
permutations of H atoms.

Key feature: resolvable inversion splitting.
It is therefore convenient to consider NH3 as
a flat molecule with a strongly anharmonic vibrational DoF.





Co-ordinate system and its transformations after
permutations of H atoms

▶ Center of mass = origin
▶ Enumerate H atoms: 1, 2, 3
▶ 𝑧 axis: ⊥ to the plane containing H atoms, right-screw oriented

for #1→ #2→ #3
▶ 𝑥 axis: atom H #1 is in the (𝑥, 𝑧)-plane
▶ 𝑦 axis: co-ordinate system is right-handed

Ψ = Ψ𝑒 ⊗ Ψ𝑣 ⊗ Ψ𝑟 ⊗ Ψ𝐼

The electronic ground state of ammonia is fully symmetric w.r.t.
permutations of H atoms.



Transformation of the Euler angles

𝑒 : (𝜙, 𝜃, 𝜒) ↦→ (𝜙, 𝜃, 𝜒)
(123) : (𝜙, 𝜃, 𝜒) ↦→ (𝜙, 𝜃, 𝜒 + 2𝜋

3 )

(132) : (𝜙, 𝜃, 𝜒) ↦→ (𝜙, 𝜃, 𝜒 − 2𝜋
3 )

(23) : (𝜙, 𝜃, 𝜒) ↦→ (𝜙 + 𝜋, 𝜋 − 𝜃,−𝜒)
(13) = (23) (132) : (𝜙, 𝜃, 𝜒) ↦→ (𝜙 + 𝜋, 𝜋 − 𝜃,−𝜒 + 2𝜋

3 )

(12) = (23) (123) : (𝜙, 𝜃, 𝜒) ↦→ (𝜙 + 𝜋, 𝜋 − 𝜃,−𝜒 − 2𝜋
3 )



Transformation of rotational wave function

Φ𝐽𝑀𝐾 (𝜙, 𝜃, 𝜒) = 𝑒
𝑖𝑀𝜙𝑑𝐽𝑀𝐾 (𝜃)𝑒

𝑖𝐾𝜒

𝑒 : Φ𝐽
𝑀𝐾
↦→ Φ𝐽

𝑀𝐾

(123) : Φ𝐽
𝑀𝐾
↦→ 𝑒2𝜋𝐾𝑖/3Φ𝐽

𝑀𝐾

(132) : Φ𝐽
𝑀𝐾
↦→ 𝑒−2𝜋𝐾𝑖/3Φ𝐽

𝑀𝐾

(23) : Φ𝐽
𝑀𝐾
↦→ (−1)𝐽Φ𝐽

𝑀 −𝐾

(13) : Φ𝐽
𝑀𝐾
↦→ (−1)𝐽𝑒2𝜋𝐾𝑖/3Φ𝐽

𝑀 −𝐾

(12) : Φ𝐽
𝑀𝐾
↦→ (−1)𝐽𝑒−2𝜋𝐾𝑖/3Φ𝐽

𝑀 −𝐾



J = const, M = const, K is varied

K = 0: Φ𝐽
𝑀0 transforms according to an IR of the 𝑆3 group.

This IR corresponds to the Young diagram:
{3}, if 𝐽 is even,
{1, 1, 1}, if 𝐽 is odd.

𝐾 ≠ 0: degenerate states Φ𝐽
𝑀𝐾

and Φ𝐽
𝑀 −𝐾 transform according to a

certain (reducible or irreducible) representation of 𝑆3.

K mod 3 = 0: reducible representation, {3}
⊕
{1, 1, 1}.

{3} : 1√
2
[Φ𝐽𝑀𝐾 + (−1)𝐽Φ𝐽𝑀 −𝐾 ]

{1, 1, 1} : 1√
2
[Φ𝐽𝑀𝐾 − (−1)𝐽Φ𝐽𝑀 −𝐾 ]



K mod 3 = 𝜅, where 𝜅 = 1, 2 : transform. matrices for
(
Φ𝐽
𝑀𝐾

Φ𝐽
𝑀 −𝐾

)
𝑒 ∼

(
1 0
0 1

)
(12) ∼ (−1)𝐽

(
0 𝑒2𝜋𝜅𝑖/3

𝑒−2𝜋𝜅𝑖/3 0

)
(13) ∼ (−1)𝐽

(
0 𝑒−2𝜋𝜅𝑖/3

𝑒2𝜋𝜅𝑖/3 0

)
(23) ∼ (−1)𝐽

(
0 1
1 0

)
(123) ∼

(
𝑒2𝜋𝜅𝑖/3 0

0 𝑒−2𝜋𝜅𝑖/3

)
(132) ∼

(
𝑒−2𝜋𝜅𝑖/3 0

0 𝑒2𝜋𝜅𝑖/3

)
Characters of the classes 𝜒(𝑒) = 2, 𝜒(12) = 0, 𝜒(123) = −1
show that 𝜅 = 1, 2 corresponds to the IR {2, 1}.



Vibrational states

For a 𝑛-atomic molecule, vibrational DoFs are given by (small)
displacements 𝛿r 𝑗 of nuclei from the classical equilibrium positions,
whereby
▶ Center-of-mass motion is excluded:

𝑛∑︁
𝑗=1
𝑚 𝑗𝛿r 𝑗 = 0

▶ 3D rotations are excluded:

𝛿r 𝑗 [e𝛼 × r 𝑗] = 0, 𝑗 = 1, 2, . . . , 𝑛, 𝛼 = 𝑥, 𝑦, 𝑧

To the lowest order, separation of variables in normal coordinates.
If a molecul contains identical nuclei, the vibrational states transform
acccording to IRs of the permutation group. If the dimension 𝑠 of the
respective IR is > 1, then the vibration frequency is 𝑠-fold degenerate.



Normal vibrational modes of ammonia
3 × 4 − 3 − 3 = 6 vibrational DoFs.

Non-degenerate normal modes
Young diagram: {3} {1, 1, 1}

𝜔1 = 3323 cm−1 Anharmonic vibrations
including inversion splitting.
Energy distance between
the two lowest inv. doublets
≈ 950 cm−1



Doubly degenerate normal modes
Young diagram: {2, 1} {2, 1}

𝜔3 = 3443 cm−1 𝜔4 = 1627 cm−1

In total 1 + 1 + 2 + 2 = 6 vibrational DoFs.

Figures from McGinnis et al., Surface Sci. 494, 28 (2001)



Ψ𝑣 = Φ1(𝑞1)Φ2(𝑞2)Φ3( ®𝑞3)Φ4( ®𝑞4)

Φ1 and Φ2 are fully symmetric against permutations of H atoms,
regardless of the vibrational quantum numbers 𝑣1 and 𝑣𝑖 (or 𝑣2 and
upper/lower inversion doublet component).
The normal modes 3 and 4 are 2D oscillators,

®̂
𝑙𝑏
† = 1√

2

(
®𝑞𝑙
𝑎𝑙
− 𝑎𝑙∇ ®𝑞𝑙

)
, 𝑙 = 3, 4.

𝑃̂
ˆ
𝑏
†
𝑙,𝑖

=

2∑︁
𝑖′=1

𝜏(𝑃̂)𝑖𝑖′ ˆ
𝑏
†
𝑙,𝑖′ , 𝑖 = 1, 2.

The state of the lth mode with the energy ℏ𝜔𝑙 (𝑣𝑙 + 1
2 ) is

(𝑣𝑙 + 1)-degenerate:

Φ
[𝑘,𝑣𝑙−𝑘 ]
𝑙

=
1√︁

𝑘!(𝑣𝑙 − 𝑘)!
𝑏̂
𝑘 †
𝑙,1 𝑏̂

(𝑣𝑙−𝑘 ) †
𝑙,2 |0⟩, 𝑘 = 0, 1, 2, . . . , 𝑣𝑙 .



The ground vibrational state is symmetric, ∀𝑃̂ : 𝑃̂ |0⟩ = |0⟩, i.e.,
{𝜆} = {3}.
The 1st excited state (𝑣𝑙 = 1) has the same symmetry type as ®𝑞𝑙, in the
case of NH3 {𝜆} = {2, 1}.
For 𝑣𝑙 > 1, the linear space spanned by Φ

[𝑘,𝑣𝑙−𝑘 ]
𝑙

is a reducible
representation of the permutation group.
There are 𝑚{𝜆} subspaces of functions transformed according to the
IR {𝜆}.
Since characters of IRs of the group 𝑆𝑛 are real,

𝑚{𝜆} =
1
𝑛!

∑︁
𝑃

𝜒{𝜆} (𝑃)𝜒(𝑃) = 1
𝑛!

∑︁
𝐾

𝒩𝐾 𝜒
{𝜆} (𝐾)𝜒(𝐾),

where 𝒩𝐾 is the number of elements in the class 𝐾 ,
∑
𝐾 𝒩𝐾 = 𝑛! .

For NH3 𝑛 = 3.



Recalling classes of 𝑆3

𝐾 𝑒 (𝑖 𝑗) (𝑖 𝑗 𝑘)

𝒩𝐾 1 3 2

𝜒{3} (𝐾) 1 1 1

𝜒{2,1} (𝐾) 2 0 −1

𝜒{1,1,1} (𝐾) 1 −1 1



Transformation matrices of the {2, 1} IR

They determine transformation of ©­«
𝑏̂
†
𝑙,1

𝑏̂
†
𝑙,2

ª®¬
𝑒 ∼

(
1 0
0 1

)
(23) ∼

(
0 1
1 0

)
(12)
(13) ∼

(
0 𝑒±2𝜋𝑖/3

𝑒∓2𝜋𝑖/3 0

)
(123)
(132) ∼

(
𝑒±2𝜋𝑖/3 0

0 𝑒∓2𝜋𝑖/3

)



𝑣𝑙 = 2
Transformation matrices for

©­­­­«
Φ
[2,0]
𝑙

Φ
[1,1]
𝑙

Φ
[0,2]
𝑙

ª®®®®¬
=

©­­­­«
(1/
√

2) 𝑏̂† 2
𝑙,1 |0⟩

𝑏̂
†
𝑙,1𝑏̂
†
𝑙,2 |0⟩

(1/
√

2) 𝑏̂† 2
𝑙,2 |0⟩

ª®®®®¬
𝑒 ∼ ©­«

1 0 0
0 1 0
0 0 1

ª®¬ (23) ∼ ©­«
0 0 1
0 1 0
1 0 0

ª®¬
(12)
(13) ∼

©­«
0 0 𝑒∓2𝜋𝑖/3

0 1 0
𝑒±2𝜋𝑖/3 0 0

ª®¬ (123)
(132) ∼

©­«
𝑒∓2𝜋𝑖/3 0 0

0 1 0
0 0 𝑒±2𝜋𝑖/3

ª®¬
Characters for classes:

𝜒(𝑒) = 3, 𝜒[(𝑖 𝑗)] = 1, 𝜒[(𝑖 𝑗 𝑘)] = 0.



𝑚{3} = (1 · 3 · 1 + 3 · 1 · 1 + 2 · 0 · 1)/6 = 1

𝑚{2,1} = [1 · 3 · 2 + 3 · 1 · 0 + 2 · 0 · (−1)]/6 = 1

𝑚{1,1,1} = [1 · 3 · 1 + 3 · 1 · (−1) + 2 · 0 · 1]/6 = 0

The linear space spanned by Φ
[2,0]
𝑙

, Φ
[1,1]
𝑙

, Φ
[0,2]
𝑙

has the structure

{3} + {2, 1}

Since all permutations are products of pairwise permutations, it is
enough to consider only (ij) for construction of a wave function being
transformed according to a certain {𝜆}.

{3} : Φ
[1,1]
𝑙

, {2, 1} : ©­«
Φ
[0,2]
𝑙

Φ
[2,0]
𝑙

ª®¬ .



Analogously, for 𝑣𝑙 = 3, the characters are

𝜒(𝑒) = 4, 𝜒[(𝑖 𝑗)] = 0, 𝜒[(𝑖 𝑗 𝑘)] = 1,

𝑚{3} = (1 · 4 · 1 + 3 · 0 · 1 + 2 · 1 · 1)/6 = 1

𝑚{2,1} = [1 · 4 · 2 + 3 · 0 · 0 + 2 · 1 · (−1)]/6 = 1

𝑚{1,1,1} = [1 · 4 · 1 + 3 · 0 · (−1) + 2 · 1 · 1]/6 = 1

The linear space spanned by Φ
[3,0]
𝑙

, Φ
[2,1]
𝑙

, Φ
[1,2]
𝑙

, Φ
[0,3]
𝑙

:

{3} + {2, 1} + {1, 1, 1}

{3} : 1√
2
(Φ[3,0]

𝑙
+Φ[0,3]

𝑙
) , {1, 1, 1} : 1√

2
(Φ[3,0]

𝑙
−Φ[0,3]

𝑙
) ,

{2, 1} : ©­«
Φ
[2,1]
𝑙

Φ
[1,2]
𝑙

ª®¬ .



Symmetry of the vibrational wave function

Ψ𝑣 = Φ1(𝑞1)Φ2(𝑞2)Φ3( ®𝑞3)Φ4( ®𝑞4)
The linear space of all vibrational DoFs:

L = L1 ⊗ L2 ⊗ L3 ⊗ L4.

This yields a reducible representation with the character
𝜒𝑣 (𝑃) = 𝜒1(𝑃)𝜒2(𝑃)𝜒3(𝑃)𝜒4(𝑃).

The normal mode 1 is fully symmetric, 𝜒1(𝑃) = 1.
The 2nd normal mode (incl. inversion!) is antisymmetric,
𝜒2(𝑃) = (−1)𝜛𝑃𝑣𝑖 ; {𝜆} = {3} for even 𝑣𝑖 and = {1, 1, 1} for odd 𝑣𝑖 .
The wave functions of modes 3 and 4 can have the symmetry
{3}, {2, 1}, {1, 1, 1}. The vibrational w.f. has the symmetry
{𝜆2} ⊗ {𝜆3} ⊗ {𝜆4}.

{3} ⊗ {3} = {1, 1, 1} ⊗ {1, 1, 1} = {3}, {1, 1, 1} ⊗ {3} = {1, 1, 1},

{2, 1} ⊗ {3} = {2, 1} ⊗ {1, 1, 1} = {2, 1},
{2, 1} ⊗ {2, 1} = {3} + {2, 1} + {1, 1, 1}.



Rotational ⊗ vibrational ⊗ electronic wave function

𝜒𝑟𝑣𝑒 (𝑃) = 𝜒𝑟 (𝑃)𝜒𝑣 (𝑃)𝜒𝑒 (𝑃)

For the ground state of NH3, 𝜒𝑒 (𝑃) ≡ 1, and

{𝜆𝑟𝑣𝑒} = {𝜆𝑟 } ⊗ {𝜆𝑣}

All symmetry types are possible, but an additional restriction arises
from the statistics of nuclear spins (Fermi-Dirac for NH3, 𝑠 = 1

2 ,
Bose-Einstein for ND3, 𝑠 = 1).



General theory for spin statistics in polyatomic molecules

Assume a molecule containing 𝑛 identical nuclei (bosons or fermions)
with spin 𝑠. ∑𝑛

𝑗=1 ŝ 𝑗 = Î
Assume that the rovibronic wave function Ψ𝑟𝑣𝑒 transforms according
to an IR {𝜆} of the 𝑆𝑛 group, 𝑑{𝜆} being the dimension of this IR.
This means that the 𝑑{𝜆} rovibronic functions transform as

𝑃̂Ψ 𝑗 =

𝑑{𝜆}∑︁
𝑗′=1

𝜏
{𝜆}
𝑗 𝑗′ (𝑃̂)Ψ 𝑗′

The complex-conjugate functions:

𝑃̂Ψ∗𝑗 =

𝑑{𝜆}∑︁
𝑗′=1

𝜏
{𝜆} ∗
𝑗 𝑗′ (𝑃̂)Ψ

∗
𝑗′

Since the characters of 𝑆𝑛 are real, matrices 𝜏{𝜆} ∗
𝑗 𝑗′ (𝑃̂) comprise an IR

corresponding to the same {𝜆}.



We always can choose a unitary transformation:

∀𝑃̂ :
𝑑{𝜆}∑︁
𝑖=1

𝜏
{𝜆} ∗
𝑖 𝑗
(𝑃̂)𝜏{𝜆}

𝑖𝑘
(𝑃̂) = 𝛿 𝑗𝑘

Ψ 𝑗’s depend on electronic, vibrational, and rotational coordinates and
transform according to an IR 𝜏{𝜆} .

Integer 𝑠, bosonic nuclei.
We choose nuclear spin functions X 𝑗’s transforming under
permutations of nuclear spins according to 𝜏{𝜆} ∗. Then for the full
(coordinate-spin) w.f.

Ψ𝑟𝑣𝑒,𝑠𝑝𝑖𝑛 =
1√
𝑑{𝜆}

𝑑{𝜆}∑︁
𝑗=1

Ψ 𝑗X 𝑗

𝑃̂Ψ𝑟𝑣𝑒,𝑠𝑝𝑖𝑛 =
1√
𝑑{𝜆}

𝑑{𝜆}∑︁
𝑗=1

𝜏
{𝜆}
𝑗𝑘
(𝑃̂)𝜏{𝜆} ∗

𝑗 𝑗′ (𝑃̂)Ψ𝑘X 𝑗′ =
1√
𝑑{𝜆}

𝑑{𝜆}∑︁
𝑘=1

Ψ𝑘X𝑘 =

= Ψ𝑟𝑣𝑒,𝑠𝑝𝑖𝑛, i.e., the w.f. is bosonic.



Half-integer 𝑠, fermionic nuclei.

{1, 1, . . . , 1} ⊗ {𝜆} = {𝜆̃} is an IR corresponding to a conjugate
Young diagarm:

𝑑{𝜆} = 𝑑{𝜆̃}

One-dimensional antisymmetric representation:

𝑃̂𝜓{1,1,...,1} = (−1)𝜛𝑃𝜓{1,1,...,1} .

where 𝜛𝑃 is a number of pairwise permutations in 𝑃̂ (odd or even).



For fermionic nuclei, spin functions X 𝑗 :

𝑃̂X 𝑗 =

𝑑{𝜆}∑︁
𝑗′=1

𝜏
{𝜆̃} ∗
𝑗 𝑗′ (𝑃̂)X 𝑗′ = (−1)𝜛𝑃

𝑑{𝜆}∑︁
𝑗′=1

𝜏
{𝜆} ∗
𝑗 𝑗′ (𝑃̂)X 𝑗′

It follows from the unitarity of 𝜏{𝜆̃} that the whole w.f. has the
fermionic symmetry:

𝑃̂

𝑑{𝜆}∑︁
𝑗=1

Ψ 𝑗X 𝑗√︁
𝑑{𝜆}

= (−1)𝜛𝑃

𝑑{𝜆}∑︁
𝑗=1

Ψ 𝑗X 𝑗√︁
𝑑{𝜆}



Spin functions of three identical particles
Notation: | (𝐼12)𝐼𝑀𝐼⟩, where 𝐼12 = intermediate coupling moment.
[𝑃̂, 𝐼𝜁 ] = 0, [𝑃̂, Î2] = 0, [𝑃̂, Î2

12] ≠ 0 (𝜁 = lab.axis).
𝐼, 𝑀𝐼 -manifolds with different 𝐼12 can be classified w.r.t. {𝜆}.

𝑠 𝐼 𝐼12 {𝜆}

0 0 0 {3}
1
2

3
2 1 {3}

1
2

1
2 1 {2, 1}

1
2

1
2 0 {2, 1}

𝑠 𝐼
∑ | (𝐼12)⟩ {𝜆}

1 3 | (2)⟩ {3}

1 2 | (2)⟩ {2, 1}

1 2 | (1)⟩ {2, 1}

1 1
√

5
3 | (0)⟩ +

2
3 | (2)⟩ {3}

1 1 2
3 | (0)⟩ −

√
5

3 | (2)⟩ {2, 1}

1 1 | (1)⟩ {2, 1}

1 0 | (1)⟩ {1, 1, 1}



Nuclear spin states for NH3 and ND3

NH3 ND3

{𝜆}𝑟𝑣𝑒 {𝜆̃}𝑛𝑠 𝐼

{3} {1, 1, 1} N/A

{2, 1} {2, 1} 1
2

{1, 1, 1} {3} 3
2

{𝜆}𝑟𝑣𝑒 {𝜆}𝑛𝑠 𝐼

{3} {3} 3, 1

{2, 1} {2, 1} 2, 1

{1, 1, 1} {1, 1, 1} 0

A level with a total nucl. spin 𝐼 is (2𝐼 + 1)-fold degenerate,
𝑀𝐼 = −𝐼,−𝐼 + 1, . . . , 𝐼 − 1, 𝐼.



I. Solid lines: III. Dot-dashed
Allowed lines:
transitions Two-photon
with Δ𝐾 = 0, transitions (or
Δ𝑣𝑖 odd, allowed in
Δ𝐽 = 0, ±1. electric field),

Δ𝐾 = 0,
II. Dashed lines: Δ𝑣𝑖 even,
transitions Δ𝐽 = 0,±1,±2.
allowed due to
vibrational-
rotational
coupling,
Δ𝐾 ≠ 0, 𝐴1 ∼ {3}
Δ𝑣𝑖 even, 𝐴2 ∼ {1, 1, 1}
Δ𝐽 = 0,±1. 𝐸 ∼ {2, 1}



Static dipole moment of ammonia

1 D ≈ 0.39343 𝑒𝑎𝐵
Permutation of one pair of H atoms changes the direction of 𝑧-axis,
hence, changes 𝜇𝑧 to −𝜇𝑧 . The operator of dipole moment has the
symmetry {1, 1, 1} against permutations.

{𝜆}𝑖𝑛 ⊗ {1, 1, 1} = {𝜆} 𝑓



Allowed transitions

States with spatial {3} are absent in NH3 (no spin w.f. with {1, 1, 1}
for 𝑠 = 1

2 ).
These states are present in ND3, but there are no transitions between
the states with {3} and {1, 1, 1}, because IR and MW transitions
conserve the total nuclear spin of three H.
Therefore, transitions between the double-degenerate states ({2, 1})
are allowed: {2, 1} = {2, 1} ⊗ {1, 1, 1}, and Δ𝑣𝑖 being odd.
From the Wigner–Eckart theorem:

Δ𝐽 = 0, ±1, Δ𝐾 = 0.

The lowest frequencies are for 𝑣𝑖 = 0←→ 𝑣𝑖 = 1.



Forbidden transitions

The underlying symmetry is broken if we take into account the
coupling between the vibrational and rotational DoFs. This allows for
(weak) transitions with even Δ𝑣𝑖 and odd Δ𝐾; Δ𝐽 = 0, ±1.

Two-photon transitions

{1, 1, 1} ⊗ {1, 1, 1} = {3}

For two-photon processes, Δ𝑣𝑖 is even.
From the Wigner–Eckart theorem:

Δ𝐽 = 0, ±1 ± 2, Δ𝐾 = 0.

These transitions can be also activated by an external electric field,
mixing even and odd 𝑣𝑖 , as single-photon transitions.



Molecular symmetry group

In many molecules, potential barriers between different configurations
are impenetrable. Example: CH3Cl. In that case, the levels with
different types of symmetry w.r.t. permutations of identical nuclei are
degenerate. Then the levels are classified according to the molecular
symmetry group, i.e., the point group of symmetry of the equilibrium
configuration of a molecule.

D. M. Jonas, Spin statistics: An error in Landau and Lifschitz’
Quantum Mechanics. J. Chem. Phys. 90, 5563 (1989).


