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The Schrödinger equation and symmetries

�̂�Ψ(r1, . . . , r𝑛) = 𝐸Ψ(r1, . . . , r𝑛)

∀𝑔 ∈ 𝐺 : [�̂�, �̂�] = 0 ⇒ eigenfunctions of �̂� transform according to
IRs of 𝐺.

Molecular states
Born–Oppenheimer approximation (small parameter =

√︁
𝑚𝑒/𝑚𝑝 ):

Ψ = Ψ𝑒𝑙 (r𝑒1 , . . . , r
𝑒
𝑙 ;𝜎

𝑒
1 , . . . , 𝜎

𝑒
𝑙 ) ⊗ Ψ𝑁 (r𝑁1 , . . . , r

𝑁
𝑛 ;𝜎𝑁1 , . . . , 𝜎

𝑁
𝑛 )

Ψ𝑁 = Ψ𝑟𝑣 (r𝑁1 , . . . , r
𝑁
𝑛 ) ⊗ Ψ𝑁𝑆 (𝜎𝑁1 , . . . , 𝜎

𝑁
𝑛 )

Ψ𝑟𝑣 = Ψ𝑟 ⊗ Ψ𝑣 , 𝐸 = 𝐸𝑒𝑙 + 𝐸𝑣 + 𝐸𝑟



Electronic energy in the BO approximation
Nuclei are considered as classical particles; for given r𝑁1 , . . . , r

𝑁
𝑛 the

Schrödinger equation for electrons is solved; the absolute minimum
𝐸𝑒𝑙 with respect to r𝑁1 , . . . , r

𝑁
𝑛 yields the equilibrium configuration of

the molecule (up to the translation of all particles by the same 𝛿r and
rotation of the molecule).

Molecular vibrations
𝑛-atomic molecule:
▶ 3𝑛 translational degrees of freedom in total;
▶ 3 degrees of freedom (DoF) of the center of mass;
▶ 2 rotational DoF for 𝑛 = 2 or a linear molecule with 𝑛 > 2

(e.g.,C2H2) or 3 rotational DoF for a non-linear molecule (𝑛>2);
▶ As the result: # of vibrational DoF 𝒩𝑣 = 3𝑛 − 5 or 3𝑛 − 6



Electronic energy can be considered as the potential energy with resp.
to the positions of nuclei. Potential minimum for the equilibrium
configuration ⇒ harmonic potential with resp. to small deviations
𝛿r𝑁
𝑗

from the equilibrium.

Constraints:
1.

∑𝑛
𝑗=1 𝛿r

𝑁
𝑗
= 0 excludes center-of-mass motion; this constraint

makes it natural, to set the origin of the co-ordinate system at the
molecule’s center of mass.

2. 𝛿r𝑁
𝑗
[e𝛼 × r𝑁

𝑗
] = 0 for all 𝑗 = 1, . . . , 𝑛 and 𝛼 = 𝑥, 𝑦, 𝑧 excludes

rotational motion.

To a harmonic approximation (normal co-ordinates!)

𝐸𝑣 =

𝒩𝑣∑︁
ℓ=1

ℏ𝜔ℓ (𝑣ℓ + 1
2 ), 𝑣ℓ = 0, 1, 2, . . .

Some frequencies 𝜔ℓ may be degenerate (depending on the symmetry
of the molecule).



Rotational energy
We set the origin of the co-ordinate frame to the center of mass,∑𝑛
𝑗=1 𝑚 𝑗r𝑁𝑗 = 0.

Moment of inertia tensor:

ℐ𝛼𝛽 =

𝑛∑︁
𝑗=1
𝑚 𝑗𝑟

𝑁
𝑗𝛼𝑟

𝑁
𝑗𝛽 , 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧.

This symmetric tensor can be diagonalized by an orthogonal
transformation to main axes. Setting 𝑥, 𝑦, 𝑧 along main axes:

ℐ𝛼𝛽 = 2�̃�−1
𝛼 𝛿𝛼𝛽

Classical rotation energy: 𝐸𝑟 =
∑
𝛼=𝑥,𝑦,𝑧 �̃�𝛼𝐽

2
𝛼, where 𝐽𝛼 is a

projection of angular momentum J of rotating nuclei to the axis 𝛼.
Hamiltonian of a quantum rigid rotor:

�̂�𝑟 =
∑︁

𝛼=𝑥,𝑦,𝑧

𝐵𝛼𝐽
2
𝛼, 𝐵𝛼 = ℏ2�̃�𝛼



Symmetric rigid rotor

𝐵𝑥 = 𝐵𝑦 ≡ 𝐵⊥, 𝐵𝑧 = 𝐵∥ ≠ 𝐵⊥

𝐽2
𝑥 + 𝐽2

𝑦 + 𝐽2
𝑧 = Ĵ2

�̂�𝑟 = 𝐵⊥Ĵ2 + (𝐵∥ − 𝐵⊥)𝐽2
𝑧

Quantum numbers:

𝐽 = 0, 1, 2, . . . ; 𝑀 = −𝐽,−𝐽 + 1, . . . , 0, . . . , 𝐽 − 1, 𝐽;
𝐾 = −𝐽,−𝐽 + 1, . . . , 0, . . . , 𝐽 − 1, 𝐽

Wave function (up to normalization) is a complex-conjugate Wigner
𝐷-function: Φ𝐽𝑀𝐾 (𝜙, 𝜃, 𝜒) = 𝐷𝐽 ∗𝑀𝐾 (𝜙, 𝜃, 𝜒) = 𝑒

𝑖𝑀𝜙𝑑𝐽𝑀𝐾 (𝜃)𝑒
𝑖𝐾𝜒

𝐾 is the projection of the rotational angular momentum to the
molecular axis 𝑧; 𝑀 is the projection to the lab (non-moving) axis 𝑍 .

𝐸𝑟 = 𝐵⊥𝐽 (𝐽 + 1) + (𝐵∥ − 𝐵⊥)𝐾2



Spherical rotor

𝐵𝑥 = 𝐵𝑦 = 𝐵𝑧 ≡ 𝐵

�̂�𝑟 = 𝐵Ĵ2, 𝐸𝑟 = 𝐵𝐽 (𝐽 + 1)

Φ𝐽𝑀𝐾 (𝜙, 𝜃, 𝜒) = 𝐷𝐽 ∗𝑀𝐾 (𝜙, 𝜃, 𝜒) = 𝑒
𝑖𝑀𝜙𝑑𝐽𝑀𝐾 (𝜃)𝑒

𝑖𝐾𝜒

Linear / diatomic molecules
Two rotational degrees of freedom ⇒ two quantum numbers

𝐽 = 0, 1, 2, . . . ; 𝑀 = −𝐽,−𝐽 + 1, . . . , 0, . . . , 𝐽 − 1, 𝐽.

Wave function is given by a spherical harmonic 𝑌𝐽𝑀 (𝜃, 𝜙),

𝐸𝑟 = 𝐵𝐽 (𝐽 + 1)



Asymmetric rotor

All three 𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧 are different.
We introduce

𝐽± =
1
√

2
(𝐽𝑥 ± 𝑖𝐽𝑦), 𝐽− = 𝐽

†
+

Ĵ2 = 𝐽+𝐽− + 𝐽−𝐽+ + 𝐽2
𝑧

�̂�𝑟 = 𝐵+Ĵ2 + 𝐵− (𝐽2
+ + 𝐽2

−) + (𝐵𝑧 − 𝐵+)𝐽2
𝑧 ,

𝐵± =
1
2
(𝐵𝑥 ± 𝐵𝑦)

This Hamiltonian can be diagonalized numerically using

Ĵ2Φ𝐽𝑀𝐾 = 𝐽 (𝐽 + 1)Φ𝐽𝑀𝐾 , 𝐽2
𝑧Φ𝐽𝑀𝐾 = 𝐾2Φ𝐽𝑀𝐾 ,

𝐽2
+Φ𝐽𝑀𝐾 = 1

2

√︁
[𝐽 (𝐽+1)−𝐾 (𝐾+1)] [𝐽 (𝐽+1)−(𝐾+1) (𝐾+2)]Φ𝐽𝑀𝐾+2

𝐽2
−Φ𝐽𝑀𝐾 = 1

2

√︁
[𝐽 (𝐽+1)−𝐾 (𝐾−1)] [𝐽 (𝐽+1)−(𝐾−1) (𝐾−2)]Φ𝐽𝑀𝐾−2



Hydrogen molecule
H2 in rovibronic co-ordinates (centered at the center of masses)

R = distance between the two nuclei; (x,y,z) = co-ord. of electrons.

Symmetry operations: 𝑒, inversion 𝐸∗, permutation of two identical
nuclei (12), and (12)∗ ≡ (12)𝐸∗ = 𝐸∗(12).



Permutation (12)

𝑅′ = 𝑅

𝜃′ = 𝜋 − 𝜃, 𝜙′ = 𝜙 + 𝜋
For electrons: 𝑧′ = −𝑧, 𝑦′ = −𝑦, 𝑥′ = 𝑥;
since the co-ordinate system remains right-handed, only two
co-ordinates change the sign.



Inversion 𝐸∗

𝑅′ = 𝑅

𝜃′ = 𝜋 − 𝜃, 𝜙′ = 𝜙 + 𝜋
For electrons: 𝑧′ = 𝑧, 𝑦′ = 𝑦, 𝑥′ = −𝑥;
the transformed co-ordinate system is the same as after (12), but
electrons are inverted w.r.t. its origin ⇒ only one co-ordinate changes
the sign.



Molecular term for a diatomic molecule

A molecule, unlike an atom, has no spherical symmetry, [L̂2, �̂�] ≠ 0.
Good quantum numbers: S2, 𝐿𝑧 , 𝐿𝑧 + 𝑆𝑧 , where L̂ and Ŝ are
electronic orbital momentum and spin, respectively.

2𝑆+1Λ

2𝑆 + 1 = multiplicity,
Λ = Σ,Π,Δ, . . . corresponds to |𝐿𝑧 | = 0, 1, 2, . . . .
Degeneracy is 2S+1 for Σ states and 2(2S+1) for Π,Δ,Φ, . . . states.

If spin-orbit coupling is important:

2𝑆+1ΛΩ

Ω = |𝐿𝑧 + 𝑆𝑧 | (2-fold degeneracy for Ω ≠ 0)



Homonuclear diatomic molecules

2𝑆+1Λ±
Ω,𝑔/𝑢

± : electronic wave function
does no change

changes
its sign after 𝐸∗ .

This notation is obsolete for Π,Δ, . . . states and applies for Σ+ and Σ−.

g = gerade, u = ungerade

𝑔

𝑢

}
: electronic wave function

does no change
changes

its sign after (12)∗ .

H2 molecule, as most of the diatomic molecules, has a fully
symmetric electronic ground state 1Σ+

𝑔.
There are few exceptions, e.g., O2: 3Σ−

𝑔 and NO: 2Π.



Ortho- and para-hydrogen

Spin of the proton: 𝑖 = 1/2.
𝐼 = 0 state:
⟨𝜎1, 𝜎2 |0, 0⟩ = 1√

2

(
⟨𝜎1 | 12 , +

1
2 ⟩⟨𝜎2 | 12 ,−

1
2 ⟩ − ⟨𝜎1 | 12 ,−

1
2 ⟩⟨𝜎2 | 12 , +

1
2 ⟩
)

⟨𝜎1, 𝜎2 |0, 0⟩ = − ⟨𝜎2, 𝜎1 |0, 0⟩
𝐼 = 1 state:
⟨𝜎1, 𝜎2 |1, 0⟩ = 1√

2

(
⟨𝜎1 | 12 , +

1
2 ⟩⟨𝜎2 | 12 ,−

1
2 ⟩ + ⟨𝜎1 | 12 ,−

1
2 ⟩⟨𝜎2 | 12 , +

1
2 ⟩
)

⟨𝜎1, 𝜎2 |1, +1⟩ = ⟨𝜎1 | 12 , +
1
2 ⟩⟨𝜎2 | 12 , +

1
2 ⟩

⟨𝜎1, 𝜎2 |1,−1⟩ = ⟨𝜎1 | 12 ,−
1
2 ⟩⟨𝜎2 | 12 ,−

1
2 ⟩

⟨𝜎1, 𝜎2 |1, 𝑀𝐼⟩ = + ⟨𝜎2, 𝜎1 |1, 𝑀𝐼⟩
Fermi–Dirac statistics:

(12) |Ψ𝑒𝑙⟩|Ψ𝑣⟩|Ψ𝑟 ⟩ =
{
+ |Ψ𝑒𝑙⟩|Ψ𝑣⟩|Ψ𝑟 ⟩ , 𝐼 = 0
− |Ψ𝑒𝑙⟩|Ψ𝑣⟩|Ψ𝑟 ⟩ , 𝐼 = 1



The electronic state 1Σ+
𝑔 is symmetric w.r.t. (12).

(12) changes only angular variables, but does not affect the vibrational
DoF in H2, therefore (12) |Ψ𝑣⟩ = + |Ψ𝑣⟩, regardless of the vibrational
quantum number 𝑣.
Due to the change 𝜃′ = 𝜋 − 𝜃, 𝜙′ = 𝜙 + 𝜋: (12) |Ψ𝑟 ⟩ = (−1)𝐽 |Ψ𝑟 ⟩.
𝐽 odd ⇔ 𝐼 = 1 (orthohydrogen)
𝐽 even ⇔ 𝐼 = 0 (parahydrogen)

D2 molecule (𝑖 = 1, Bose–Einstein statistics)
𝐽 odd ⇔ 𝐼 = 1 (para-D2)
𝐽 even ⇔ 𝐼 = 0, 2 (ortho-D2)


