
Representations of the symmetric group



Young diagrams

Integer partition:

𝑛 = 𝜆1 + 𝜆2 + · · · + 𝜆𝑚, 𝜆1 ⩾ 𝜆2 ⩾ · · · ⩾ 𝜆𝑚

corresponds to a Young diagram with 𝑚 rows of resp. lengths 𝜆𝑖

Young tableau: filled with numbers



Permutation of the numbered boxes.
We denote by 𝑝 permutations that interchange boxes within their
respective rows and by 𝑞 permutations that interchange boxes within
their respective columns.
Function on the symmetric group (𝑠 ∈ 𝑆𝑛):

𝜑(𝑠) =
{
𝜔𝑞, 𝑠 = 𝑞𝑝

0, 𝑠 ≠ 𝑞𝑝
, 𝜔𝑞 =

{
1, 𝑞 even
−1, 𝑞 odd

Consider 𝑠 ∈ 𝑆𝑛 as the argument of a function and all 𝑡 ∈ 𝑆𝑛 as the
parameters of the function, such that

𝜑𝑡 (𝑠) = 𝜑(𝑠𝑡)

and a linear space L spanned by these functions. For all 𝑟 ∈ 𝑆𝑛 we
define operators

𝜏(𝑟)𝜑𝑡 (𝑠) = 𝜑𝑡 (𝑠𝑟)

L invariant with resp. to these operators, since
𝜑𝑡 (𝑠𝑟) = 𝜑(𝑠𝑟𝑡) = 𝜑𝑟𝑡 (𝑠)



Obviously, 𝜏 is a representation, since 𝜏(𝑟1)𝜏(𝑟2) = 𝜏(𝑟1𝑟2).
Moreover, it is an IR. Young diagrams {𝜆1, 𝜆2, . . . , 𝜆𝑚} specify all
IRs of 𝑆𝑛.

Example: explicit construction of the IR of 𝑆3 corresponding to {2, 1}

𝑝 : 𝑒, (1, 3)
𝑞 : 𝑒, (1, 2)

Products 𝑞𝑝: 𝑒, (1, 3), (1, 2), (1, 2) (1, 3) = (1, 3, 2)



Only two functions are linearly independent.
𝜑13 = 𝜑, 𝜑132 = 𝜑12, 𝜑23 = −𝜑 − 𝜑12, 𝜑123 = −𝜑 − 𝜑12



Characters of the representation {2, 1}: 𝜒(𝑒) = 2;
𝜒(12) = 0 for permutations of a single pair of objects only;
𝜒(123) = −1 for cyclic permutations of three objects.



Explicit construction of functions of 3 variables
transforming according to IRs of 𝑆3

Three identical particles characterized by variables 𝛼1, 𝛼2, 𝛼3
(co-ordinates or spins); three single-particle states 𝜓1, 𝜓2, 𝜓3.
Total number of all possible 3-particle states in this basis: 33 = 27

Symmetric functions (IR ={3}): # of functions

𝜓 𝑗 (𝛼1)𝜓 𝑗 (𝛼2)𝜓 𝑗 (𝛼3), 𝑗 = 1, 2, 3 3
1√
3
[𝜓 𝑗 (𝛼1)𝜓 𝑗 (𝛼2)𝜓𝑘 (𝛼3) + 𝜓 𝑗 (𝛼1)𝜓𝑘 (𝛼2)𝜓 𝑗 (𝛼3)+
𝜓𝑘 (𝛼1)𝜓 𝑗 (𝛼2)𝜓 𝑗 (𝛼3)], 𝑗 = 1, 2, 3, 𝑘 ≠ 𝑗 3 × 2 = 6

1√
6

∑
𝑃 𝑃̂(𝑖1𝑖2𝑖3 )𝜓1(𝛼𝑖1)𝜓2(𝛼𝑖2)𝜓3(𝛼𝑖3) 1

TOTAL: 10

Antisymmetric function (IR ={1, 1, 1}): # of functions = 1
1√
6

∑
𝑃 (−1)𝑃 𝑃̂(𝑖1𝑖2𝑖3 )𝜓1(𝛼𝑖1)𝜓2(𝛼𝑖2)𝜓3(𝛼𝑖3)



The remaining 16 functions are transformed according to IR ={2, 1}
3 × 2 = 6 ways to choose 𝜓 𝑗𝜓 𝑗𝜓𝑘 , 𝑗 = 1, 2, 3, 𝑘 ≠ 𝑗 .

2 × 6 linear combinations orthogonal to
1√
3
[𝜓 𝑗 (𝛼1)𝜓 𝑗 (𝛼2)𝜓𝑘 (𝛼3) + 𝜓 𝑗 (𝛼1)𝜓𝑘 (𝛼2)𝜓 𝑗 (𝛼3)+
𝜓𝑘 (𝛼1)𝜓 𝑗 (𝛼2)𝜓 𝑗 (𝛼3)] ≡ 1√

3
[Ψ 𝑗 𝑗𝑘 + Ψ 𝑗𝑘 𝑗 + Ψ𝑘 𝑗 𝑗] :

Ψ±(𝛼1, 𝛼2, 𝛼3) = 1√
3

[
𝑒±2𝜋𝑖/3𝜓 𝑗 (𝛼1)𝜓 𝑗 (𝛼2)𝜓𝑘 (𝛼3)+

𝜓 𝑗 (𝛼1)𝜓𝑘 (𝛼2)𝜓 𝑗 (𝛼3) + 𝑒∓2𝜋𝑖/3𝜓𝑘 (𝛼1)𝜓 𝑗 (𝛼2)𝜓 𝑗 (𝛼3)
]
=

= 1√
3

[
𝑒±2𝜋𝑖/3Ψ 𝑗 𝑗𝑘 + Ψ 𝑗𝑘 𝑗 + 𝑒∓2𝜋𝑖/3Ψ𝑘 𝑗 𝑗

]
𝜏(𝑔)Ψ𝜇 =

∑︁
𝜇′=+,−

Ψ𝜇′𝜏𝜇′𝜇 (𝑔), 𝜇 = +,−



Transformation of
(
Ψ+
Ψ−

)

𝜏(𝑒) =
(

1 0
0 1

)
, 𝜏(12) =

(
0 𝑒2𝜋𝑖/3

𝑒−2𝜋𝑖/3 0

)
,

𝜏(23) =
(

0 𝑒−2𝜋𝑖/3

𝑒2𝜋𝑖/3 0

)
, 𝜏(13) =

(
0 1
1 0

)
,

𝜏(123) =
(
𝑒2𝜋𝑖/3 0

0 𝑒−2𝜋𝑖/3

)
, 𝜏(132) =

(
𝑒−2𝜋𝑖/3 0

0 𝑒2𝜋𝑖/3

)
.

𝜒(𝑒) = 2, 𝜒(12) = 0, 𝜒(123) = −1.

𝜏(123) = 𝜏(23)𝜏(12), 𝜏(132) = 𝜏(23)𝜏(13).

𝜏−1(𝑔) = 𝜏†(𝑔)



Three different single-particle states and {2, 1} permutation
symmetry

We construct Ψ± from 𝜓1𝜓1𝜓3 and apply to them an operator
F̂2←1 =

∑3
𝑛=1 𝐹̂

(𝑛)
2←1 defined via

𝐹̂
(𝑛)
2←1 𝜓1(𝛼𝑛) = 𝜓2(𝛼𝑛), 𝐹̂

(𝑛)
2←1𝜓2,3(𝛼𝑛) = 0, 𝑛 = 1, 2, 3,

which is fully symmetric against permutations of the particles.
After normalization to 1:

Φ
[113]
± =

1
√

2
F̂2←1 Ψ

[113]
± =

1
√

6

[
𝑒±2𝜋𝑖/3Ψ123 + 𝑒±2𝜋𝑖/3Ψ213+

Ψ132 + Ψ231 + 𝑒∓2𝜋𝑖/3Ψ312 + 𝑒∓2𝜋𝑖/3Ψ321
]
.

∀𝑔 ∈ 𝑆3 : 𝜏(𝑔)F̂2←1 = F̂2←1𝜏(𝑔) ⇒ the matrix 𝜏(𝑔) has in the Φ±
basis the same form as in the Ψ± basis.
Another pair of lin. independent functions: Φ[112]

± = 1√
2
F̂3←1 Ψ

[112]
± .



Bosonic and fermionic wave functions

𝑃̂Ψ𝐵 (𝑥1, . . . , 𝑥𝑛; 𝜎1, . . . , 𝜎𝑛) = Ψ𝐵 (𝑥1, . . . , 𝑥𝑛; 𝜎1, . . . , 𝜎𝑛)

𝑃̂Ψ𝐹 (𝑥1, . . . , 𝑥𝑛; 𝜎1, . . . , 𝜎𝑛) = (−1)𝑃Ψ𝐹 (𝑥1, . . . , 𝑥𝑛; 𝜎1, . . . , 𝜎𝑛)

If the co-ordinate part transforms according to IR of 𝑆𝑛 given by a
certain Young diagram, then the spin part transforms according to
▶ the same IR for bosons;
▶ the IR corresponding to a transposed Young diagram for

fermions.

Dimensions of representations for a Young diagram and its transpose
are the same.



For a given unitary representation of dimension 𝑠:

Ψ𝐵 (𝑥1, . . . , 𝑥𝑛; 𝜎1, . . . , 𝜎𝑛) =
𝑠∑︁
𝑗=1

𝑅 𝑗 (𝑥1, . . . , 𝑥𝑛)𝑊 𝑗𝜎1, . . . , 𝜎𝑛),

Ψ𝐹 (𝑥1, . . . , 𝑥𝑛; 𝜎1, . . . , 𝜎𝑛) =
𝑠∑︁
𝑗=1

𝑅 𝑗 (𝑥1, . . . , 𝑥𝑛)𝑊̃ 𝑗𝜎1, . . . , 𝜎𝑛),

where the permutation transformations 𝑃 are given by

𝜏(𝑃)𝑅 𝑗 =

𝑠∑︁
𝑘=1

𝑅𝑘𝜏𝑘 𝑗 (𝑃), 𝜏(𝑃)𝑊 𝑗 =

𝑠∑︁
𝑘=1

𝑊𝑘𝜏
∗
𝑘 𝑗 (𝑃),

𝜏(𝑃)𝑊̃ 𝑗 = (−1)𝑃
𝑠∑︁

𝑘=1
𝑊̃𝑘𝜏

∗
𝑘 𝑗 (𝑃)



Dimensions for IRs of 𝑆𝑛

Dimension of IR = {𝜆} is equal to the number of standard Young
tableaux.



Hook length formula

∑︁
{𝜆}

𝑑2
{𝜆} = 𝑛!



For three particles

A non-trivial case: {2, 1}; this Young diagram is its own transpose.
Co-ordinate basis:

𝑅1 = Ψ+(𝑥1, 𝑥2, 𝑥3), 𝑅2 = Ψ− (𝑥1, 𝑥2, 𝑥3).

Spin basis

𝑊1 = Ψ− (𝜎1, 𝜎2, 𝜎3), 𝑊2 = Ψ+(𝜎1, 𝜎2, 𝜎3) for bosons,

𝑊̃1 = Ψ− (𝜎1, 𝜎2, 𝜎3), 𝑊̃2 = −Ψ+(𝜎1, 𝜎2, 𝜎3) for fermions.



Total spin and permutation symmetry

Single-particle spin 𝑠; total spin 𝑆 and its projection 𝑆𝑧 .
Both 𝑆2 and 𝑆𝑧 commute with spin permutations. Therefore, |𝑆, 𝑆𝑧⟩
have also additional quantum number, characterizing their symmetry
against permutations.

Total spin for three s=1/2 particles: 1/2 + 1/2→ 0, 1.
0 + 1/2→ 1/2, 1 + 1/2→ 1/2, 3/2.

Total spin for three s=1 particles: 1 + 1→ 0, 1, 2.
0 + 1→ 1, 1 + 1→ 0, 1, 2, 2 + 1→ 1, 2, 3.

Total spin 𝑆

{𝜆} 𝑠 = 0 𝑠 = 1
2 𝑠 = 1

{3} 0 3
2 3, 1

{2, 1} − 1
2 ,

1
2 2, 2, 1, 1

{1, 1, 1} − − 0


