Representations of groups (continued)



Reducible and irreducible representations

A representation T of a group G in a linear space L is called
reducible, if

ALy c L, L1#{0}: VgeG,Vxe L: T(g)xeLl

L is invariant with respect to all 7(g).

3 A representation T of a group G in a linear space L is called
irreducible (IR), if £ contains no nontrivial subspace invariant with
respect to 7'(g).

Examples:

1. All one-dimensional representations are irreducible.

2. Consider the group D,, and its representation in a 3D vector space.
The latter can be divided into two subspaces: (a) vectors parallel to
the z-axis, (b) vectors in a horizontal plane. I.e., we explicitly show
that the representation mentioned above is reducible.



Induced representations

Assume that T in £ is a reducible representation;
a non-trivial £ C £ is invariant with resp. to all 7'(g);
we can define an operator in a linear space of a smaller dimension:

VeeG,Vxe L : Ti(gx=T(gx

Operator T'(g) induces i (g) in a linear space £L;;
The reducible repr. T induces 77 in a linear space L.

If T is unitary then 7] is also unitary.

The combination of all irreducible representations induced by a
reducible (unitary) T fully characterizes T'.



Theorem

If T is a reducible unitary representation of G in £ and £; c L is
invariant with resp. to all T(g) then £, = £\ £,

[strictly speaking, £> = (L \ L) U {0}]

is also invariant with resp. to 7'(g).

Letxe Ly andy € L.
Then 7' (g)x € L.
Then the vectors 7~ (g)x and y are orthogonal:

(xIT(g)ly) =0

i.e., T(g)y orthogonal to all vectors x from £,
i.e., f(g) s Lo—> Lo (invariance proven).



L is split into two subspaces: £ = L1 + Lo If T(g) induces 7} (g) and
75(g) in respective subspaces and x € L,y € Lo, thenforz=x+y

T(g)z=Ti(g)x +T>(g)y

If we know the representations 77 and 7> then we know 7.

We call T a sum of 77 and 75.

If one of Ty, T3 is reducible, we can represent it as a sum of two new
representations etc.

Finally, we have a splitting:

Linear space is split into mutually orthogonal subspaces

L=LDyr@,p g
The reducible representation is a sum of IRs:

T=TY +7@ 4+ . TWN)



finT=T®" +7® 4+ TW) there are m; IRs, which are equivalent
to a certain IR 7)), then we say that 7)) is contained in T m; times.
If none of T, 7 . TWN) jg equivalent to an IR T of the
same group G, then we say that 7(?) is not contained in 7.

Any reducible unitary (finite-dimensional) representation can be split
into IRs and constructed as their sum.

Obviously, if the elements of the sum of representations are
equivalent, Ty ~ 7| and T ~ T}, then

T+ ~T +T,



Lemma
Assume that 7 is an irreducible representation of G. Then
VgeG: Af(g) =1(g9)A = A=AE,

where E is the identity operator in the respective L.
Proof: A is a linear operator, therefore it has at least one eigenvalue
(we denote it by A). There is a subspace L;:

xe L, = Ax = Ax.

Obviously, £ # @, otherwise A is not an eigenvalue.
Vxe L1: At(g)x = t(g)Ax = 1t(g)x,

ie., T(g)x € L1 = L isinvariant with resp. to all 7(g).
By assumption, 7 is an IR, hence, £; = L,

Ve l;: Ax=1x = A=aE



Functions generated by a representation

Let T be a (reducible or irreducible) representation of G in L,
dim £ = s. Choose an orthogonal and normalized basis e;,
i=1,2,...,s.

The matrix elements 7;x(g) defined via

S
T()ex = ) Tul(@)er,  Tiul2) = €Tia(g)ex,
i=1
yield s? functions of g.  Obviously,

Ti(gh) = D Ta(@)Tik(h)
=1



Definition of a scalar product of the functions on a group:

() =3 3 e (®)

geG

Functions ¢; and ¢; are orthogonal & (¢1, ¢2) = 0.
A similar definition can be given for infinite groups, if the averaging
functional M exists:

(o, ¥) = M{p, ¥}



Ist orthogonality theorem

A unitary IR 7 of dimension s generates s> mutually orthogonal
functions 7;x(g), i,k =1,2,3,...,5s,

1
(Tik Tirker) = <GS
Proof: Let B be a lin.operator in the same £, where 7 is defined.

A= % Z #(h)B# (WY

heG

A=y O HenBe = 1 3 H(ghBe(n)

heG heG



We replace sum over all & via sum over i’ = gh:

#(g)A = % D w) B ) = % D #(H) B T)E(g) = AR (g)

heG heG

A commutes with all #(g), hence, A = AE.
More precisely,

L D Bk = AB)E
N heG

% Z ZTij(h)lele(h_l) = A(B)dik
heG jl
A(B) is yet to be determined; in a general case (for s > 1), it is not an
eigenvalue of B.
By assumption, 7(g) is unitary (we can always choose a unitary IR),
therefore, 7 (h™") = [#7' (Wi = [#7 (W) ]k = 7}, (h)



=~ Z Z le(h)leTkl(h) Z(Ttla Tkl)le = A(B)dik

heG Jjl

Choose B such that B j1=0ji"01xr, 1.€., B is a linear operator mapping
e, to e if k = k’ and to 0 otherwise.
For a given pair i’, k’:
(Tiirs Tkwr) = Airk ik
Taking trace: 37, §;; = s

Z(rﬁ/,m— D 2 it DT (h) = 7 (e) = e

heG i

1 1
Ajrgr = 5 O = (T, Tkx’) = " OikOik’



Schur lemma

If 7D and 7@ are two non-equivalent IRs of G acting in £ and £,
respectively, and A : L5 — L),

vee G #(g)d = A7 (g),
then A = 0.

The main idea of the proof: if Ais non-zero, then these two
representations are either equivalent or reducible.




2nd orthogonality theorem

If D and 7(® are two non-equivalent IRs of G then
(H 2y _
(Tl.k ,Taﬁ) =0.

Proof: Let B be an operator L — L.
| N
A= >0 Be® (n )
heG

satisfies #(1) (g)A = A#(P (g) forallg € G = A = 0 (Schur lemma).
The rest of the proof is analogous to the 1st orthogonality theorem.



Completeness theorem

The set of functions Tl.(;)(g), a=1,2,....,q ;i,k=1,2,...,54,
generated by all non-equivalent IRs of G is complete, that is, any
function ¢(g) on G can be written as

@) =33 O ),

a ik
Cl = salp, i)
(the last expression follows from the 1st and 2nd orth. theorems).

Proof: We introduce for all g € G an operator R(g):
R(g)¢(h) = ¢ (hg) = ¢(h).

R(g)R(g)w(h) = R(g)w (hg) = R(g1)p(h) =
= ¢(hg1) = Y (hg1g) = R(g18)¢ (h)



R(g1)R(g) = R(g18)

The mapping g — R(g) is the regular representation.
In a general case, R is reducible.

£=> L,

Any function of g may be expressed as the linear combination of the
basis functions go (g) and

Sa

P )= D ()6l (o).

k=1

i.e., any function can be written as ¢(g) = X, X, « Cl.(]?)ri(]?) (g). The
number of the functions in the 7- and ¢-basis is the same:

q
ZsizN

a=1



