
Representations of groups (continued)



Reducible and irreducible representations

A representation 𝑇 of a group 𝐺 in a linear space L is called
reducible, if

∃L1 ⊂ L, L1 ≠ {0} : ∀𝑔 ∈ 𝐺, ∀x ∈ L1 : 𝑇 (𝑔)x ∈ L1

L1 is invariant with respect to all 𝑇 (𝑔).
3 A representation 𝑇 of a group 𝐺 in a linear space L is called
irreducible (IR), if L contains no nontrivial subspace invariant with
respect to 𝑇 (𝑔).
Examples:

1. All one-dimensional representations are irreducible.
2. Consider the group 𝐷𝑛 and its representation in a 3D vector space.

The latter can be divided into two subspaces: (a) vectors parallel to
the 𝑧-axis, (b) vectors in a horizontal plane. I.e., we explicitly show
that the representation mentioned above is reducible.



Induced representations

Assume that 𝑇 in L is a reducible representation;
a non-trivial L1 ⊂ L is invariant with resp. to all 𝑇 (𝑔);
we can define an operator in a linear space of a smaller dimension:

∀𝑔 ∈ 𝐺, ∀x ∈ L1 : 𝑇1(𝑔)x = 𝑇 (𝑔)x

Operator 𝑇 (𝑔) induces 𝑇1(𝑔) in a linear space L1;
The reducible repr. 𝑇 induces 𝑇1 in a linear space L1.

If 𝑇 is unitary then 𝑇1 is also unitary.

The combination of all irreducible representations induced by a
reducible (unitary) 𝑇 fully characterizes 𝑇 .



Theorem

If 𝑇 is a reducible unitary representation of 𝐺 in L and L1 ⊂ L is
invariant with resp. to all 𝑇 (𝑔) then L2 = L \ L1
[strictly speaking, L2 = (L \ L1) ∪ {0}]
is also invariant with resp. to 𝑇 (𝑔).

Let x ∈ L1 and y ∈ L2.
Then 𝑇−1(𝑔)x ∈ L1.
Then the vectors 𝑇−1(𝑔)x and y are orthogonal:

⟨x|𝑇 (𝑔) |y⟩ = 0

i.e., 𝑇 (𝑔)y orthogonal to all vectors x from L1,
i.e., 𝑇 (𝑔) : L2 ↦→ L2 (invariance proven).



L is split into two subspaces: L = L1 + L2 If 𝑇 (𝑔) induces 𝑇1(𝑔) and
𝑇2(𝑔) in respective subspaces and x ∈ L1, y ∈ L2, then for z = x + y

𝑇 (𝑔)z = 𝑇1(𝑔)x + 𝑇2(𝑔)y

If we know the representations 𝑇1 and 𝑇2 then we know 𝑇 .
We call 𝑇 a sum of 𝑇1 and 𝑇2.
If one of 𝑇1, 𝑇2 is reducible, we can represent it as a sum of two new
representations etc.
Finally, we have a splitting:
Linear space is split into mutually orthogonal subspaces

L = L (1) + L (2) + . . .L (𝑁 )

The reducible representation is a sum of IRs:

𝑇 = 𝑇 (1) + 𝑇 (2) + . . . 𝑇 (𝑁 )



If in 𝑇 = 𝑇 (1) + 𝑇 (2) + . . . 𝑇 (𝑁 ) there are 𝑚𝑙 IRs, which are equivalent
to a certain IR 𝑇 (𝑙) , then we say that 𝑇 (𝑙) is contained in 𝑇 𝑚𝑙 times.
If none of 𝑇 (1) , 𝑇 (2) , . . . , 𝑇 (𝑁 ) is equivalent to an IR 𝑇 (0) of the
same group 𝐺, then we say that 𝑇 (0) is not contained in 𝑇 .

Any reducible unitary (finite-dimensional) representation can be split
into IRs and constructed as their sum.

Obviously, if the elements of the sum of representations are
equivalent, 𝑇1 ∼ 𝑇 ′

1 and 𝑇2 ∼ 𝑇 ′
2 , then

𝑇1 + 𝑇2 ∼ 𝑇 ′
1 + 𝑇 ′

2



Lemma

Assume that 𝜏 is an irreducible representation of 𝐺. Then

∀𝑔 ∈ 𝐺 : 𝐴̂𝜏(𝑔) = 𝜏(𝑔) 𝐴̂ ⇒ 𝐴̂ = 𝜆𝐸̂,

where 𝐸̂ is the identity operator in the respective L𝜏 .

Proof: 𝐴̂ is a linear operator, therefore it has at least one eigenvalue
(we denote it by 𝜆). There is a subspace L1:

x ∈ L1 ⇒ 𝐴̂x = 𝜆x.

Obviously, L1 ≠ ∅, otherwise 𝜆 is not an eigenvalue.
∀x ∈ L1 : 𝐴̂𝜏(𝑔)x = 𝜏(𝑔) 𝐴̂x = 𝜆𝜏(𝑔)x,
i.e., 𝜏(𝑔)x ∈ L1 ⇒ L1 is invariant with resp. to all 𝜏(𝑔).
By assumption, 𝜏 is an IR, hence, L1 = L𝜏 ,

∀ ∈ L𝜏 : 𝐴̂x = 𝜆x ⇒ 𝐴̂ = 𝜆𝐸̂



Functions generated by a representation

Let 𝑇 be a (reducible or irreducible) representation of 𝐺 in L,
dimL = 𝑠. Choose an orthogonal and normalized basis e𝑖 ,
𝑖 = 1, 2, . . . , 𝑠.
The matrix elements 𝑇𝑖𝑘 (𝑔) defined via

𝑇 (𝑔)e𝑘 =

𝑠∑︁
𝑖=1

𝑇𝑖𝑘 (𝑔)e𝑖 , 𝑇𝑖𝑘 (𝑔) = e∗𝑖𝑇𝑖𝑘 (𝑔)e𝑘 ,

yield 𝑠2 functions of 𝑔. Obviously,

𝑇𝑖𝑘 (𝑔ℎ) =
𝑠∑︁
𝑙=1

𝑇𝑖𝑙 (𝑔)𝑇𝑙𝑘 (ℎ)



Definition of a scalar product of the functions on a group:

(𝜑, 𝜓) = 1
𝑁

∑︁
𝑔∈𝐺

𝜑(𝑔)𝜓∗(𝑔)

Functions 𝜑1 and 𝜑2 are orthogonal ⇔ (𝜑1, 𝜑2) = 0.
A similar definition can be given for infinite groups, if the averaging
functional M exists:

(𝜑, 𝜓) = M{𝜑, 𝜓∗}



1st orthogonality theorem

A unitary IR 𝜏 of dimension 𝑠 generates 𝑠2 mutually orthogonal
functions 𝜏𝑖𝑘 (𝑔), 𝑖, 𝑘 = 1, 2, 3, . . . , 𝑠,

(𝜏𝑖𝑘 , 𝜏𝑖′𝑘′) =
1
𝑠
𝛿𝑖𝑖′𝛿𝑘𝑘′

Proof: Let 𝐵̂ be a lin.operator in the same L, where 𝜏 is defined.

𝐴̂ ≡ 1
𝑁

∑︁
ℎ∈𝐺

𝜏(ℎ)𝐵̂𝜏(ℎ−1)

𝜏(𝑔) 𝐴̂ =
1
𝑁

∑︁
ℎ∈𝐺

𝜏(𝑔)𝜏(ℎ)𝐵̂𝜏(ℎ−1) = 1
𝑁

∑︁
ℎ∈𝐺

𝜏(𝑔ℎ)𝐵̂𝜏(ℎ−1)



We replace sum over all ℎ via sum over ℎ′ = 𝑔ℎ:

𝜏(𝑔) 𝐴̂ =
1
𝑁

∑︁
ℎ′∈𝐺

𝜏(ℎ′)𝐵̂𝜏(ℎ′ −1𝑔) = 1
𝑁

∑︁
ℎ′∈𝐺

𝜏(ℎ′)𝐵̂𝜏(ℎ′ −1)𝜏(𝑔) = 𝐴̂𝜏(𝑔)

𝐴̂ commutes with all 𝜏(𝑔), hence, 𝐴̂ = 𝜆𝐸̂ .
More precisely,

1
𝑁

∑︁
ℎ∈𝐺

𝜏(ℎ)𝐵̂𝜏(ℎ−1) = 𝜆(𝐵)𝐸̂

1
𝑁

∑︁
ℎ∈𝐺

∑︁
𝑗𝑙

𝜏𝑖 𝑗 (ℎ)𝐵 𝑗𝑙𝜏𝑙𝑘 (ℎ−1) = 𝜆(𝐵)𝛿𝑖𝑘

𝜆(𝐵) is yet to be determined; in a general case (for 𝑠 > 1), it is not an
eigenvalue of 𝐵̂.
By assumption, 𝜏(𝑔) is unitary (we can always choose a unitary IR),
therefore, 𝜏𝑙𝑘 (ℎ−1) = [𝜏−1(ℎ)]𝑙𝑘 = [𝜏†(ℎ)]𝑙𝑘 = 𝜏∗

𝑘𝑙
(ℎ)



1
𝑁

∑︁
ℎ∈𝐺

∑︁
𝑗𝑙

𝜏𝑖 𝑗 (ℎ)𝐵 𝑗𝑙𝜏
∗
𝑘𝑙 (ℎ) =

∑︁
𝑗𝑙

(𝜏𝑖 𝑗 , 𝜏𝑘𝑙)𝐵 𝑗𝑙 = 𝜆(𝐵)𝛿𝑖𝑘

Choose 𝐵̂ such that 𝐵 𝑗𝑙 = 𝛿 𝑗𝑖′𝛿𝑙𝑘′ , i.e., 𝐵̂ is a linear operator mapping
e𝑘 to e𝑖′ if 𝑘 = 𝑘 ′ and to 0 otherwise.
For a given pair 𝑖′, 𝑘 ′:

(𝜏𝑖𝑖′ , 𝜏𝑘𝑘′) = 𝜆𝑖′𝑘′𝛿𝑖𝑘

Taking trace:
∑𝑠

𝑖=1 𝛿𝑖𝑖 = 𝑠∑︁
𝑖

(𝜏𝑖𝑖′ , 𝜏𝑖𝑘′) =
1
𝑁

∑︁
ℎ∈𝐺

∑︁
𝑖

𝜏𝑘′𝑖 (ℎ−1)𝜏𝑖𝑖′ (ℎ) = 𝜏𝑘′𝑖′ (𝑒) = 𝛿𝑘′𝑖′

𝜆𝑖′𝑘 ′ =
1
𝑠
𝛿𝑖′𝑘 ′ ⇒ (𝜏𝑖𝑖′, 𝜏𝑘𝑘 ′) =

1
𝑠
𝛿𝑖𝑘𝛿𝑖′𝑘 ′



Schur lemma

If 𝜏 (1) and 𝜏 (2) are two non-equivalent IRs of 𝐺 acting in L1 and L2,
respectively, and 𝐴̂ : L2 ↦→ L1,

∀𝑔 ∈ 𝐺 𝜏 (1) (𝑔) 𝐴̂ = 𝐴̂𝜏 (2) (𝑔),

then 𝐴̂ = 0.

The main idea of the proof: if 𝐴̂ is non-zero, then these two
representations are either equivalent or reducible.



2nd orthogonality theorem

If 𝜏 (1) and 𝜏 (2) are two non-equivalent IRs of 𝐺 then

(𝜏 (1)
𝑖𝑘

, 𝜏
(2)
𝛼𝛽

) = 0.

Proof: Let 𝐵̂ be an operator L2 ↦→ L1.

𝐴̂ =
1
𝑁

∑︁
ℎ∈𝐺

𝜏 (1) (ℎ)𝐵̂𝜏 (2) (ℎ−1)

satisfies 𝜏 (1) (𝑔) 𝐴̂ = 𝐴̂𝜏 (2) (𝑔) for all 𝑔 ∈ 𝐺 ⇒ 𝐴̂ = 0 (Schur lemma).
The rest of the proof is analogous to the 1st orthogonality theorem.



Completeness theorem

The set of functions 𝜏 (𝑎)
𝑖𝑘

(𝑔), 𝑎 = 1, 2, . . . , 𝑞 ; 𝑖, 𝑘 = 1, 2, . . . , 𝑠𝑎,
generated by all non-equivalent IRs of 𝐺 is complete, that is, any
function 𝜑(𝑔) on 𝐺 can be written as

𝜑(𝑔) =
∑︁
𝑎

∑︁
𝑖,𝑘

𝐶
(𝑎)
𝑖𝑘

𝜏
(𝑎)
𝑖𝑘

(𝑔),

𝐶
(𝑎)
𝑖𝑘

= 𝑠𝑎 (𝜑, 𝜏 (𝑎)𝑖𝑘
)

(the last expression follows from the 1st and 2nd orth. theorems).

Proof: We introduce for all 𝑔 ∈ 𝐺 an operator 𝑅̂(𝑔):

𝑅̂(𝑔)𝜓(ℎ) = 𝜓(ℎ𝑔) ≡ 𝜙(ℎ).

𝑅̂(𝑔1) 𝑅̂(𝑔)𝜓(ℎ) = 𝑅̂(𝑔1)𝜓(ℎ𝑔) = 𝑅̂(𝑔1)𝜙(ℎ) =

= 𝜙(ℎ𝑔1) = 𝜓(ℎ𝑔1𝑔) = 𝑅̂(𝑔1𝑔)𝜓(ℎ)



𝑅̂(𝑔1) 𝑅̂(𝑔) = 𝑅̂(𝑔1𝑔)

The mapping 𝑔 ↦→ 𝑅̂(𝑔) is the regular representation.
In a general case, 𝑅 is reducible.

L =
∑︁
𝑎

L𝑎

Any function of 𝑔 may be expressed as the linear combination of the
basis functions 𝜑 (𝑎)

𝑗
(𝑔) and

𝜑
(𝑎)
𝑗

(𝑔) =
𝑠𝑎∑︁
𝑘=1

𝜏
(𝑎)
𝑘 𝑗

(𝑔)𝜑 (𝑎)
𝑘

(𝑔),

i.e., any function can be written as 𝜑(𝑔) = ∑
𝑎

∑
𝑖,𝑘 𝐶

(𝑎)
𝑖𝑘

𝜏
(𝑎)
𝑖𝑘

(𝑔). The
number of the functions in the 𝜏- and 𝜑-basis is the same:

𝑞∑︁
𝑎=1

𝑠2
𝑎 = 𝑁


