Representations of groups (continued)

Reducible and irreducible representations

A representation T of a group G in a linear space \mathcal{L} is called reducible, if

 $\exists \mathcal{L}_1 \subset \mathcal{L}, \ \mathcal{L}_1 \neq \{\mathbf{0}\}: \ \forall g \in G, \ \forall \mathbf{x} \in \mathcal{L}_1: \ \hat{T}(g)\mathbf{x} \in \mathcal{L}_1$

 \mathcal{L}_1 is invariant with respect to all $\hat{T}(g)$.

3 A representation T of a group G in a linear space \mathcal{L} is called <u>irreducible</u> (IR), if \mathcal{L} contains no nontrivial subspace invariant with respect to $\hat{T}(g)$.

Examples:

- 1. All one-dimensional representations are irreducible.
- 2. Consider the group D_n and its representation in a 3D vector space. The latter can be divided into two subspaces: (a) vectors parallel to the *z*-axis, (b) vectors in a horizontal plane. I.e., we explicitly show that the representation mentioned above is reducible.

Induced representations

Assume that *T* in \mathcal{L} is a reducible representation; a non-trivial $\mathcal{L}_1 \subset \mathcal{L}$ is invariant with resp. to all $\hat{T}(g)$; we can define an operator in a linear space of a smaller dimension:

$$\forall g \in G, \ \forall \mathbf{x} \in \mathcal{L}_1 : \quad \hat{T}_1(g)\mathbf{x} = \hat{T}(g)\mathbf{x}$$

Operator $\hat{T}(g)$ <u>induces</u> $\hat{T}_1(g)$ in a linear space \mathcal{L}_1 ; The reducible repr. T <u>induces</u> T_1 in a linear space \mathcal{L}_1 .

If *T* is unitary then T_1 is also unitary.

The combination of all irreducible representations induced by a reducible (unitary) T fully characterizes T.

Theorem

If *T* is a reducible unitary representation of *G* in \mathcal{L} and $\mathcal{L}_1 \subset \mathcal{L}$ is invariant with resp. to all $\hat{T}(g)$ then $\mathcal{L}_2 = \mathcal{L} \setminus \mathcal{L}_1$ [strictly speaking, $\mathcal{L}_2 = (\mathcal{L} \setminus \mathcal{L}_1) \cup \{\mathbf{0}\}$] is also invariant with resp. to $\hat{T}(g)$.

Let
$$\mathbf{x} \in \mathcal{L}_1$$
 and $\mathbf{y} \in \mathcal{L}_2$.
Then $\hat{T}^{-1}(g)\mathbf{x} \in \mathcal{L}_1$.
Then the vectors $\hat{T}^{-1}(g)\mathbf{x}$ and \mathbf{y} are orthogonal

 $\langle \mathbf{x} | \hat{T}(g) | \mathbf{y} \rangle = 0$

i.e., $\hat{T}(g)\mathbf{y}$ orthogonal to all vectors \mathbf{x} from \mathcal{L}_1 , i.e., $\hat{T}(g)$: $\mathcal{L}_2 \mapsto \mathcal{L}_2$ (invariance proven). \mathcal{L} is split into two subspaces: $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2$ If $\hat{T}(g)$ induces $\hat{T}_1(g)$ and $\hat{T}_2(g)$ in respective subspaces and $\mathbf{x} \in \mathcal{L}_1$, $\mathbf{y} \in \mathcal{L}_2$, then for $\mathbf{z} = \mathbf{x} + \mathbf{y}$

$$\hat{T}(g)\mathbf{z} = \hat{T}_1(g)\mathbf{x} + \hat{T}_2(g)\mathbf{y}$$

If we know the representations T_1 and T_2 then we know T.

We call *T* a sum of T_1 and T_2 .

If one of T_1 , T_2 is reducible, we can represent it as a sum of two new representations etc.

Finally, we have a splitting:

Linear space is split into mutually orthogonal subspaces

$$\mathcal{L} = \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \dots \mathcal{L}^{(N)}$$

The reducible representation is a sum of IRs:

$$T = T^{(1)} + T^{(2)} + \dots T^{(N)}$$

If in $T = T^{(1)} + T^{(2)} + ... T^{(N)}$ there are m_l IRs, which are equivalent to a certain IR $T^{(l)}$, then we say that $T^{(l)}$ is contained in $T m_l$ times. If none of $T^{(1)}, T^{(2)}, ..., T^{(N)}$ is equivalent to an IR $T^{(0)}$ of the same group G, then we say that $T^{(0)}$ is not contained in T.

Any reducible unitary (finite-dimensional) representation can be split into IRs and constructed as their sum.

Obviously, if the elements of the sum of representations are equivalent, $T_1 \sim T'_1$ and $T_2 \sim T'_2$, then

$$T_1 + T_2 \sim T_1' + T_2'$$

Lemma

Assume that τ is an irreducible representation of G. Then

$$\forall g \in G : \hat{A}\hat{\tau}(g) = \hat{\tau}(g)\hat{A} \implies \hat{A} = \lambda \hat{E},$$

where \hat{E} is the identity operator in the respective \mathcal{L}_{τ} .

<u>Proof</u>: \hat{A} is a linear operator, therefore it has at least one eigenvalue (we denote it by λ). There is a subspace \mathcal{L}_1 :

$$\mathbf{x} \in \mathcal{L}_1 \implies \hat{A}\mathbf{x} = \lambda \mathbf{x}.$$

Obviously, $\mathcal{L}_1 \neq \emptyset$, otherwise λ is not an eigenvalue. $\forall \mathbf{x} \in \mathcal{L}_1 : \hat{A}\hat{\tau}(g)\mathbf{x} = \hat{\tau}(g)\hat{A}\mathbf{x} = \lambda\hat{\tau}(g)\mathbf{x}$, i.e., $\hat{\tau}(g)\mathbf{x} \in \mathcal{L}_1 \implies \mathcal{L}_1$ is invariant with resp. to all $\hat{\tau}(g)$. By assumption, τ is an IR, hence, $\mathcal{L}_1 = \mathcal{L}_{\tau}$,

$$\forall \in \mathcal{L}_{\tau} : \hat{A}\mathbf{x} = \lambda \mathbf{x} \quad \Rightarrow \quad \hat{A} = \lambda \hat{E}$$

Functions generated by a representation

Let *T* be a (reducible or irreducible) representation of *G* in \mathcal{L} , dim $\mathcal{L} = s$. Choose an orthogonal and normalized basis \mathbf{e}_i , $i = 1, 2, \dots, s$. The matrix elements *T*_i(*c*) defined via

The matrix elements $T_{ik}(g)$ defined via

$$\hat{T}(g)\mathbf{e}_k = \sum_{i=1}^s T_{ik}(g)\mathbf{e}_i, \qquad T_{ik}(g) = \mathbf{e}_i^* T_{ik}(g)\mathbf{e}_k,$$

yield s^2 functions of g. Obviously,

$$T_{ik}(gh) = \sum_{l=1}^{s} T_{il}(g)T_{lk}(h)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Definition of a scalar product of the functions on a group:

$$(\varphi,\psi) = \frac{1}{N} \sum_{g \in G} \varphi(g) \psi^*(g)$$

Functions φ_1 and φ_2 are orthogonal $\Leftrightarrow (\varphi_1, \varphi_2) = 0$. A similar definition can be given for infinite groups, if the averaging functional \mathcal{M} exists:

$$(\varphi,\psi) = \mathcal{M}\{\varphi,\psi^*\}$$

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - のへで

1st orthogonality theorem

A unitary IR τ of dimension *s* generates s^2 mutually orthogonal functions $\tau_{ik}(g)$, i, k = 1, 2, 3, ..., s,

$$(\tau_{ik},\tau_{i'k'})=\frac{1}{s}\delta_{ii'}\delta_{kk'}$$

<u>Proof</u>: Let \hat{B} be a lin.operator in the same \mathcal{L} , where τ is defined.

$$\begin{split} \hat{A} &\equiv \frac{1}{N} \sum_{h \in G} \hat{\tau}(h) \hat{B} \hat{\tau}(h^{-1}) \\ \hat{\tau}(g) \hat{A} &= \frac{1}{N} \sum_{h \in G} \hat{\tau}(g) \hat{\tau}(h) \hat{B} \hat{\tau}(h^{-1}) = \frac{1}{N} \sum_{h \in G} \hat{\tau}(gh) \hat{B} \hat{\tau}(h^{-1}) \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

We replace sum over all *h* via sum over h' = gh:

$$\hat{\tau}(g)\hat{A} = \frac{1}{N}\sum_{h'\in G}\hat{\tau}(h')\hat{B}\hat{\tau}(h'^{-1}g) = \frac{1}{N}\sum_{h'\in G}\hat{\tau}(h')\hat{B}\hat{\tau}(h'^{-1})\hat{\tau}(g) = \hat{A}\hat{\tau}(g)$$

 \hat{A} commutes with all $\hat{\tau}(g)$, hence, $\hat{A} = \lambda \hat{E}$. More precisely,

$$\frac{1}{N} \sum_{h \in G} \hat{\tau}(h) \hat{B} \hat{\tau}(h^{-1}) = \lambda(B) \hat{E}$$
$$\frac{1}{N} \sum_{h \in G} \sum_{jl} \tau_{ij}(h) B_{jl} \tau_{lk}(h^{-1}) = \lambda(B) \delta_{ik}$$

$$\lambda(B)$$
 is yet to be determined; in a general case (for $s > 1$), it is not an eigenvalue of \hat{B} .

By assumption, $\hat{\tau}(g)$ is unitary (we can always choose a unitary IR), therefore, $\tau_{lk}(h^{-1}) = [\hat{\tau}^{-1}(h)]_{lk} = [\hat{\tau}^{\dagger}(h)]_{lk} = \tau_{kl}^*(h)$

$$\frac{1}{N}\sum_{h\in G}\sum_{jl}\tau_{ij}(h)B_{jl}\tau_{kl}^*(h) = \sum_{jl}(\tau_{ij},\tau_{kl})B_{jl} = \lambda(B)\delta_{ik}$$

Choose \hat{B} such that $B_{jl} = \delta_{ji'} \delta_{lk'}$, i.e., \hat{B} is a linear operator mapping \mathbf{e}_k to $\mathbf{e}_{i'}$ if k = k' and to **0** otherwise. For a given pair i', k':

$$(\tau_{ii'}, \tau_{kk'}) = \lambda_{i'k'}\delta_{ik}$$

Taking trace: $\sum_{i=1}^{s} \delta_{ii} = s$

$$\sum_{i} (\tau_{ii'}, \tau_{ik'}) = \frac{1}{N} \sum_{h \in G} \sum_{i} \tau_{k'i} (h^{-1}) \tau_{ii'}(h) = \tau_{k'i'}(e) = \delta_{k'i'}$$
$$\lambda_{i'k'} = \frac{1}{s} \delta_{i'k'} \implies (\tau_{ii'}, \tau_{kk'}) = \frac{1}{s} \delta_{ik} \delta_{i'k'}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Schur lemma

If $\tau^{(1)}$ and $\tau^{(2)}$ are two non-equivalent IRs of G acting in \mathcal{L}_1 and \mathcal{L}_2 , respectively, and $\hat{A} : \mathcal{L}_2 \mapsto \mathcal{L}_1$,

$$\forall g \in G \quad \hat{\tau}^{(1)}(g)\hat{A} = \hat{A}\hat{\tau}^{(2)}(g),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

then $\hat{A} = 0$.

The main idea of the proof: if \hat{A} is non-zero, then these two representations are either equivalent or reducible.

2nd orthogonality theorem

If $\tau^{(1)}$ and $\tau^{(2)}$ are two non-equivalent IRs of G then

$$(\tau_{ik}^{(1)}, \tau_{\alpha\beta}^{(2)}) = 0$$

<u>Proof</u>: Let \hat{B} be an operator $\mathcal{L}_2 \mapsto \mathcal{L}_1$.

$$\hat{A} = \frac{1}{N} \sum_{h \in G} \hat{\tau}^{(1)}(h) \hat{B} \hat{\tau}^{(2)}(h^{-1})$$

satisfies $\hat{\tau}^{(1)}(g)\hat{A} = \hat{A}\hat{\tau}^{(2)}(g)$ for all $g \in G \implies \hat{A} = 0$ (Schur lemma). The rest of the proof is analogous to the 1st orthogonality theorem.

Completeness theorem

The set of functions $\tau_{ik}^{(a)}(g)$, a = 1, 2, ..., q; $i, k = 1, 2, ..., s_a$, generated by all non-equivalent IRs of *G* is complete, that is, any function $\varphi(g)$ on *G* can be written as

$$\varphi(g) = \sum_{a} \sum_{i,k} C_{ik}^{(a)} \tau_{ik}^{(a)}(g),$$

$$C_{ik}^{(a)} = s_a(\varphi, \tau_{ik}^{(a)})$$

(the last expression follows from the 1st and 2nd orth. theorems). Proof: We introduce for all $g \in G$ an operator $\hat{R}(g)$:

$$\hat{R}(g)\psi(h) = \psi(hg) \equiv \phi(h).$$
$$\hat{R}(g_1)\hat{R}(g)\psi(h) = \hat{R}(g_1)\psi(hg) = \hat{R}(g_1)\phi(h) =$$
$$= \phi(hg_1) = \psi(hg_1g) = \hat{R}(g_1g)\psi(h)$$

- コン・4回シュービン・4回シューレー

$\hat{R}(g_1)\hat{R}(g) = \hat{R}(g_1g)$

The mapping $g \mapsto \hat{R}(g)$ is the regular representation. In a general case, *R* is reducible.

$$\mathcal{L} = \sum_{a} \mathcal{L}_{a}$$

Any function of g may be expressed as the linear combination of the basis functions $\varphi_i^{(a)}(g)$ and

$$\varphi_{j}^{(a)}(g) = \sum_{k=1}^{s_{a}} \tau_{kj}^{(a)}(g) \varphi_{k}^{(a)}(g),$$

i.e., any function can be written as $\varphi(g) = \sum_{a} \sum_{i,k} C_{ik}^{(a)} \tau_{ik}^{(a)}(g)$. The number of the functions in the τ - and φ -basis is the same:

$$\sum_{a=1}^{q} s_a^2 = N$$