
Representations of groups



Linear spaces (often also called vector spaces)

We shall consider vector spaces over the field of real or complex
numbers. A linear space V is a non-empty set of elements (called
vectors) v that obey the following axioms:
▶ A binary operation (vector addition) is defined:

∀v1, v2 ∈ V ∃!v = v1 + v2 ∈ V;
▶ A binary function (scalar multiplication) is defined:

∀ number 𝑐 and ∀v ∈ V ∃!u = 𝑐v ∈ V;
▶ Associativity: v1 + (v2 + v3) = (v1 + v2) + v3;
▶ Commutativity: v1 + v2 = v2 + v1;
▶ Identity element of vector addition:

∃0 ∈ V : ∀v ∈ V 0 + v = v;
▶ Inverse elements of vector addition:

∀v ∈ V ∃(−v) ∈ V : v + (−v) = 0;



Axioms (continued)
▶ Compatibility of scalar-to-scalar multiplication with

scalar-to-vector multiplication: (𝑐1𝑐2)v = 𝑐1(𝑐2v);
▶ Multiplication by unity: 1 v = v;
▶ Distributivity of scalar multiplication with respect to vector

addition: 𝑐(v1 + v2) = 𝑐v1 + 𝑐v2;
▶ Distributivity of scalar multiplication with respect to addition of

scalars: (𝑐1 + 𝑐2)v = 𝑐1v + 𝑐2v.

Recalling the main concepts
• Linear combination;
• Linear independence;
• Linear subspace;
• Linear span of a subset;
• Basis and dimension.



Linear operators

𝑇 : V ↦→ V

For all vectors and numbers

𝑇 (𝑐1v1 + 𝑐2v2) = 𝑐1𝑇v1 + 𝑐2𝑇v2

Identity operator 𝐸̂ :
∀v ∈ V 𝐸̂v = v



Representation of a group: Definition

A representation 𝑇 of a group 𝐺 is defined if each 𝑔 ∈ 𝐺 corresponds
to a certain linear operator 𝑇 (𝑔) in a certain linear space L such that

𝑇 (𝑔1𝑔2) = 𝑇 (𝑔1)𝑇 (𝑔2)

Homomorphism between 𝐺 and the group of operators.

dimL is called the dimension of the representation.
dimL may be infinite; we focus on representations of finite
dimension.



Special case: Unit representation

∀𝑔 ∈ 𝐺 : 𝑇 (𝑔) = 𝐸̂ in a certain L.

This representation is called the unit representation.

It is sufficient to have dim L = 1.



Schrödinger equations and its symmetry group
Consider, for the sake of simplicity, the single-particle Schrödinger
equation

− ℏ2

2𝑚
∇2𝜓(r) +𝑈 (r)𝜓(r) = 𝐸𝜓(r).

The operator −∇2 is invariant under inversion and all 3D rotations and
translations.
The potential 𝑈 (r) may remain invariant under a certain group 𝐺

(point group or periodic translations).

∀𝑔 ∈ 𝐺 : 𝑇 (𝑔) 𝑓 (r) = 𝑓 (𝑔r).

By assumption, 𝑈 (𝑔r) = 𝑈 (r).
We apply 𝑇 (𝑔) to both sides of the Schrödinger eq. and obtain

− ℏ2

2𝑚
∇2𝜓(𝑔r) +𝑈 (r)𝜓(𝑔r) = 𝐸𝜓(𝑔r).



Obviously, 𝑇 (𝑔1)𝑇 (𝑔2) = 𝑇 (𝑔1𝑔2).

The number of linearly independent functions 𝜓(𝑔r), where we take

all elements 𝑔 ∈ 𝐺, is the dimension of the linear space L,

where a representation 𝑇 is defined.



Functional of averaging

𝜑 : 𝐺 ↦→ R or 𝐺 ↦→ C

I.e., for each 𝑔 ∈ 𝐺 a real (or complex) number 𝜑(𝑔) is defined.
For a finite group 𝐺 of the order 𝑁:

𝑀 (𝜑) = 1
𝑁

∑︁
𝑔∈𝐺

𝜑(𝑔)

1. ∀𝑔 ∈ 𝐺 : 𝜑(𝑔) > 0 ⇒ 𝑀 (𝜑) > 0

2. ∀𝑔 ∈ 𝐺 : 𝜑(𝑔) = 1 ⇒ 𝑀 (𝜑) = 1

3. If 𝜒(𝑔) = 𝜑(𝑔ℎ) and 𝜒̃(𝑔) = 𝜑(ℎ𝑔), where ℎ ∈ 𝐺, then

𝑀 (𝜒) = 𝑀 ( 𝜒̃) = 𝑀 (𝑔)

The proof using the uniqueness of ℎ−1:

𝑀 (𝜒) = 1
𝑁

∑︁
𝑔∈𝐺

𝜒(𝑔) = 1
𝑁

∑︁
𝑔∈𝐺

𝜑(𝑔ℎ) = 1
𝑁

∑︁
𝑔∈𝐺

𝜑(𝑔) = 𝑀 (𝑔)



An extension to some (not all!) infinite groups is possible.
E.g., for the rotation group (Euler angles 𝛼, 𝛽, 𝛾):

𝑀 (𝜑) = 1
8𝜋2

∫ 2𝜋

0
𝑑𝛼

∫ 𝜋

0
𝑑𝛽 sin 𝛽

∫ 2𝜋

0
𝑑𝛾 𝜑(𝛼, 𝛽, 𝛾)

Or, recalling Wigner 𝐷-functions for half-integer spins,

𝑀 (𝜑) = 1
16𝜋2

∫ 4𝜋

0
𝑑𝛼

∫ 𝜋

0
𝑑𝛽 sin 𝛽

∫ 2𝜋

0
𝑑𝛾 𝜑(𝛼, 𝛽, 𝛾)



Equivalent representations

Assume that 𝑇 is a representation of 𝐺 in L.
A non-singular operator 𝐴̂: L ↦→ L1, dimL1 = dimL.

𝑇𝐴(𝑔) = 𝐴̂𝑇 (𝑔) 𝐴̂−1

𝑔 ↦→ 𝑇𝐴(𝑔) is an equivalent representation in L1.

𝑇𝐴(𝑔1𝑔2) = 𝐴̂𝑇 (𝑔1𝑔2) 𝐴̂−1 = 𝐴̂𝑇 (𝑔1)𝑇 (𝑔2) 𝐴̂−1 =

𝐴̂𝑇 (𝑔1) 𝐴̂−1 𝐴̂𝑇 (𝑔2) 𝐴̂−1 = 𝑇𝐴(𝑔1)𝑇𝐴(𝑔2)

All representations of 𝐺 can be divided into classes of mutually
equivalent representations. It is sufficient to know one representation
from each class.

Each class of equivalent representations contains at least one unitary
representation, i.e., such 𝑇 that ∀𝑔 ∈ 𝐺 : [𝑇 (𝑔)]† = [𝑇 (𝑔)]−1.



Proof. Let ⟨u|v⟩ be a scalar product of vectors defined in L. Then

(u|v) = 1
𝑁

∑︁
ℎ∈𝐺

⟨u| [𝑇 (ℎ)]†𝑇 (ℎ) |v⟩

satisfies all the requirements for a scalar product, namely,

(u|𝑎1v1 + 𝑎2v2) = 𝑎1(u|v1) + 𝑎2(u|v2),

(v|v) > 0, v ≠ 0

(the latter inequality follows from the 1st property of the averaging
functional).

(u| [𝑇 (𝑔)]†𝑇 (𝑔) |v) = 1
𝑁

∑︁
ℎ∈𝐺

⟨u| [𝑇 (ℎ)]† [𝑇 (𝑔)]†𝑇 (𝑔)𝑇 (ℎ) |v⟩ =

=
1
𝑁

∑︁
ℎ∈𝐺

⟨u| [𝑇 (𝑔ℎ)]†𝑇 (𝑔ℎ) |v⟩ = 1
𝑁

∑︁
ℎ∈𝐺

⟨u| [𝑇 (ℎ)]†𝑇 (ℎ) |v⟩ = (u|v)

Operators 𝑇 (𝑔) are unitary w. resp. to (. . . | . . . ).



Knowing a certain representation 𝑇 , we can construct an equivalent
unitary representation.

dimL = 𝑠

“Old” basis: {e1, e2, . . . , e𝑠}, ⟨e𝑖 |e𝑘⟩ = 𝛿𝑖𝑘

“New” basis: {e′1, e′2, . . . , e′𝑠}, (e′
𝑖
|e′
𝑘
) = 𝛿𝑖𝑘

Define an operator 𝐴̂ such that 𝐴̂e𝑖 = e′
𝑖
, 𝑖 = 1, 2, . . . , 𝑠. Then the

representation
𝑇𝐴(𝑔) = 𝐴̂−1𝑇 (𝑔) 𝐴̂

possesses the unitarity property,

(u| [𝑇𝐴(𝑔)]†𝑇𝐴(𝑔) |v) = (u|v)


