Examples of groups (continued)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

$SO(d)$, $O(d)$ continued

Rotation of an d-dimensional vector:

$$
A'_{i}=\sum_{k=1}^{d}M_{ik}A_{k}, \quad k=1,2,\ldots,d
$$

Rotating the coordinate system by θ_{ij} in the (x_i, x_j) -plane:

KORKARYKERKER POLO

Any rotation can be represented as a product of rotations in planes.

$$
M = M_1 M_2 \dots M_n
$$

$$
\det M = 1
$$

Orthogonal group in d dimensions: $O(d) = \mathcal{I} \otimes SO(d)$ What is $\mathcal I$ in a general case?

It is a reflection of an odd number of axes!

Reflection of an even number of axes can be achieved by consecutive rotations over π in different planes (odd $\#$ of rotations):

 $x_1, x_2 \rightarrow -x_1, -x_2 \equiv$ rotation by π in the (x_1, x_2) -plane. $x_1, x_2, x_3, x_4 : \rightarrow -x_1, -x_2, -x_3, -x_4 \equiv x_1, x_2 : \rightarrow -x_1, -x_2,$ then $-x_2, x_3 : \rightarrow x_2, -x_3$, then $x_2, x_4 : \rightarrow -x_2, -x_4$.

KORKAR KERKER SAGA

Reflection of the ith axis:

イロトメ 御 トメ 差 トメ 差 トッ 差し 2990

Point groups

 $O(d)$ leaves the origin of co-ordinates invariant.

Any subgroup of $O(d)$ has the same property and comprises a point group.

Trivial case:

 $O(d')$, $SO(d')$, where $d' = 1, 2, \ldots, d$, are subgroups of $O(d)$. Subroups are divided into the

1st kind: containing only rotations;

2nd kind: all the others (i.e., containing \tilde{M} with det $\tilde{M} = -1$).

In what follows, we consider point groups in 3D, i.e., subgroups of $O(d)$.

KORKAR KERKER SAGA

The simplest case: C_n

There is a (directed) axis C in 3D. Then C_n is the group of rotations around C over angles, which are integer multiples of $2\pi/n$.

If we denote by c_n the rotation over $2\pi/n$, then

$$
C_n=\{e,c_n,c_n^2,\ldots,c_n^{n-1}\}.
$$

Order of this point group $= n$. C_n is cyclic.

Let $C_n \subset G$

Then the axis C is called an axis of the *n*th order.

If G contains a rotation by π around an axis perpendicular to C or a rotation around C times reflection then c_n and c_n^{-1} are conjugate.

Two axes C and C' are equivalent if c'_n is conjugate to c_n or to c_n^{-1} . This is true, if G contains an element that transforms C to $C'.$

 D_n This is a group that maps a right prism with an n -sided regular polygon base to itself. It has one axis C_n of the nth order and n axes u_i of the 2nd order orthogonal to C_n . Rotation around each u_i maps C_n to itself. c_n and c_n^{n-1} are conjugate; c_n^k and c_n^{n-k} are conjugate.

Axes $\begin{array}{cc} u_1, & u_3, & u_5, & \dots \\ u_2, & u_4, & u_6, & \dots \end{array}$ are equivalent $\}$ by rotation around C_n

If *n* is odd, then all $u_1, u_2, u_3, u_4, \ldots$ are equivalent. Classes: n even

 $\{e\}, \{c_1, c_n^{n-1}\}, \ldots, \{c_n^{n/2-1}, c_n^{n/2+1}\}, \{c_n^{n/2}\}, \{u_1, u_3, \ldots\}, \{u_2, u_4, \ldots\}$

$$
q(D_n)=\tfrac{1}{2}n+3
$$

KORKAR KERKER SAGA

n odd

$$
\{e\}, \{c_1, c_n^{n-1}\}, \ldots, \{c_n^{(n-1)/2}, c_n^{(n+1)/2}\}, \{u_1, u_2, u_3, u_4, \ldots\}
$$

$$
q(D_n) = \frac{1}{2}(n+3)
$$

The tetrahedral group is a rotational symmetry group of the regular tetrahedron. Order $= 12$.

T

Axes $C_3^{(1)}$ $i_j^{(1)}$, $i = 1, 2, 3, 4$, are equivalent, but unidirectional. 2nd-order axes u_{ik} are equivalent. Four classes: $\{e\}, \{c_3^{(1)}\}$ $c_3^{(1)}, \ldots, c_3^{(1)}$ $\{c_3^{(1)}\}, \{c_3^{(1)\,2}$ $c_3^{(1)2}, \ldots, c_3^{(1)2}$ $\{u_{12}, u_{13}, u_{23}\}$

KORKAR KERKER SAGA

 \overline{O} The octahedral group is a rotational symmetry group of the cube.

Order = 24. $\qquad \qquad$ O is isomorphic to S_4 .

$$
C_3^{(i)}
$$
, $i = 1, 2, 3, 4$
\n $C_4^{(i)}$, $i = 1, 2, 3$ \n
\ntwo-directional

2nd-order axes: $u_{12}, u_{23}, u_{34}, u_{41}, u_{26}, u_{37}$ Classes:

$$
\{e\}, \{c_4^{(i)}, c_4^{(i)3}\}, \{c_4^{(i)2}\}, \{c_3^{(i)}, c_3^{(i)2}\}, \{u_{ik}\}\
$$

 \equiv 990

 I (alternative notation: Y)

The icosahedral group is the rotational symmetry group of both the regular dodecahedron and the regular icosahedron. $Order = 60$ Classes: (ii) (i) 4) (c^{i}) 2 (c^{i}) 3) (c^{i}) (c^{i}) 2 (k) .

$$
\{e\}, \{c_5^{(1)}, c_5^{(1)4}\}, \{c_5^{(1)2}, c_5^{(1)3}\}, \{c_3^{(1)}, c_3^{(1)2}\}, \{c_2^{(1)}\}\}
$$

 $i = 1, ..., 6; \quad j = 1, ..., 10; \quad k = 1, ..., 15$

This is a full list of the finite point groups of the 1st kind.

Limit $n \to \infty$

 C_{∞} – trivial (rotations in 2D); $D_{\infty} = C_n \otimes U$, where U is a group or rotations around a 2nd-order axis $u \perp \mathcal{C}_{\infty}$

KORKARYKERKER POLO

Finite point groups of the 1st kind: Summary

Group Order $\#$ of classes

: ▶ 4 로 ▶ 로 좀 ⊙ Q Q ^

Point groups of the 2nd kind S_{2n}

2n-fold rotation-reflection symmetry group (not to be confused with the group of permutations!)

$$
S_{2n}
$$
 is a cyclic group of order 2*n*:
\ne, s_{2n} , s_{2n}^2 , ..., s_{2n}^{2n-1} .
\n{e, s_{2n}^2 , s_{2n}^4 , ..., s_{2n}^{2n-2} } = $C_n \subset S_{2n}$

C_{nh}

Rotations and rotation-reflections over angles $(integer) \times 2\pi/n$

 $Order = 12.$ Elements: $c_n^k, \sigma_h c_n^k = s(2\pi k/n), \quad k = 0, 1, \ldots, n-1,$ σ_h is the reflection in the horizontal ($\perp \mathcal{C}_n$) plane. Each class consists of only one element.**KORKAR KERKER ST VOOR**

Group of symmetry of a regular *n*-gonal pyramid.

 $n \text{ odd}$ n even

$$
c_n^k \leftrightarrow c_n^k, \quad \sigma_{k+1} \leftrightarrow u_{k+1}, \qquad k = 0, 1, 2, \ldots, n-1.
$$

Isomorphism \Rightarrow the same number of classes,

$$
q(C_{nv})=\frac{n}{2}+3,\quad n \text{ even};\qquad q(C_{nv})=\frac{n+3}{2},\quad n \text{ odd}
$$

 \circ

 $D_{\mathsf{n}\mathsf{h}}$

Group of symmetry of a regular *n*-sided prism.

4*n* elements: 2*n* elements of C_{nh} ;

n horizontal 2nd-order axes u_1, u_2, \ldots, u_n ;

n vertical reflection planes $\sigma_1, \sigma_2, \ldots, \sigma_n$. The axis C_n is two-directional. Therefore, the rotations are distributed into classes in the same way as in the group $C_{n\nu}$. The same is true for rotation-reflections $\sigma_h c_h^k$. Other classes:

n even:

$$
\{\sigma_1, \sigma_3, \ldots, \sigma_{n-1}\}, \{\sigma_2, \sigma_4, \ldots, \sigma_n\},
$$

$$
\{u_1, u_3, \ldots, u_{n-1}\}, \{u_2, u_4, \ldots, u_n\}.
$$

n even:

$$
\{\sigma_1,\sigma_2,\sigma_3,\ldots,\sigma_{n-1},\sigma_n\},\ \{u_1,u_2,u_3,\ldots,u_{n-1},u_n\}.
$$

Classes in total:

$$
q(D_{nh}) = n + 10, \quad n \text{ even}; \qquad q(D_{nh}) = n + 5, \quad n \text{ odd}
$$

 \circ

Group of symmetry of two regular n-sided prisms, put on top of each other and rotated by π/n with respect to each other. 4*n* elements: 2*n* elements of S_{2n} ; *n* horizontal 2nd-order axes u_1, u_2, \ldots, u_n ; n vertical reflection planes $\sigma_1, \sigma_2, \ldots, \sigma_n$

see the bottom figure.

Classes:

 $\{e\}, \{s_{2n}, s_{2n}^{2n-1}\}, \ldots, \{s_{2n}^{n-1}, s_{2n}^{n+1}\}, \{s_{2n}^n\},$ $\{u_1, u_2, \ldots, u_n\}, \{\sigma_1, \sigma_2, \ldots, \sigma_n\}$

4 0 1 4 4 5 1 4 5 1 5 1 5

 Ω

$$
q(D_{nd})=n+3
$$

Group of symmetry of a tetrahedron. All edges have

the same length

24 elements: 12 elements of the group \mathcal{T} ; 6 reflections w. resp. to planes $\sigma_{12}, \sigma_{13}, \sigma_{14}, \sigma_{23}, \sigma_{24}, \sigma_{34};$ $2 \times 3 = 6$ rotation-reflections s_4 , s_4^3 around each of the three 2nd-order axes.

KORKARYKERKER POLO

Five classes:

$$
\{e\}, \ \{c_3^{(i)}, c_3^{(i)2}\}, \ \{u_{ik}\}, \ \{s_4^{(ik)}, s_4^{(ik)3}\}, \ \{\sigma_{ik}\},
$$
\n# of elements 1 + 8 + 3 + 6 + 6 = 24
\nwith all relevant *i*, *k* within a class.

 $T_h = \mathcal{I} \otimes \mathcal{T}$, where \mathcal{I} is the group of inversion.

24 elements: 12 elements of the group \bar{T} ;

1 inversion;

8 rotations-reflections

$$
\mathcal{I}c_3^{(i)} = s_6^{(i)5}
$$
, $\mathcal{I}c_3^{(i)2} = s_6^{(i)}$, $i = 1, 2, 3, 4$;

6 reflections

 $\mathcal{I}u_{ik} = \sigma_{ik}, \quad u_{ik} \perp \sigma_{ik}, \quad \{ik\} = \{12\}, \{13\}, \{14\}.$

Eight classes:

$$
\{e\}, \ \{c_3^{(i)}\}, \ \{c_3^{(i)2}\}, \ \{u_{ik}\}, \ \{\mathcal{I}\}, \ \{s_6^{(i)}\}, \ \{s_6^{(i)5}\}, \ \{\sigma_{ik}\},
$$

of elem. 1 + 4 + 4 + 3 + 1 + 4 + 4 + 3 = 24 with all relevant *i*, *k* within a class.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Group of symmetry of a cube. 48 elements: 24 elements of the group O; 1 inversion; 3 reflections w. resp. to three planes parallel to the sides; 6 reflections w. resp. to planes containing diagonals of opposite sides; 8 rotation-reflections by $\pm \pi/3$ around the four 3rd-order axes; 6 rotation-reflections by $\pm \pi/4$ around the four 4th-order axes.

Six classes are the same as in \mathcal{O} ; another six classes are obtained from the previous ones by applying inversion.

KORKAR KERKER SAGA

In total $q(O_h) = 12$

I_h (alternative notation: Y_h)

Group of symmetry of a dodecahedron (Platonic solid with 12 regular pentagonal sides).

$$
I_h=\mathcal{I}\otimes I
$$

Order = 120; $q(l_h) = 10$

This is a full list of the finite point groups of the 2nd kind. Limit $n \to \infty$

$$
\lim_{n \to \infty} C_{nh} \equiv C_{\infty h}, \qquad \lim_{n \to \infty} C_{n\nu} \equiv C_{\infty \nu},
$$

$$
\lim_{n \to \infty} D_{nh} = \lim_{n \to \infty} D_{nd} \equiv D_{\infty h}
$$

KORKARYKERKER POLO

Finite point groups of the 2nd kind: Summary

Kロトメ部トメミトメミト ミニのQC

Crystallographic restriction theorem

Rotational symmetries of a crystal are limited to 2-fold, 3-fold, 4-fold, and 6-fold.

(This does not apply to quasicrystals).

Consider two points, A and B of a crystalline lattice. $r = AB$. Let α be an angle of rotation leaving the structure invariant. Rotation by α around A: $B \to B'$. Rotation by α around B: $A \rightarrow A'$. $r' = A\vec{B'} = mr$, where m is integer. Points A, B, B', A' are vertices of $\pi - \alpha$ a trapezium. \mathbf{R}' A'

Three sides with a length r , the side $A'B'$ is of the length r' .

$$
r' = r + 2r\cos(\pi - \alpha) = r - 2r\cos\alpha
$$

$$
\cos\alpha = -\frac{m-1}{2} = \frac{M}{2}, \qquad \text{M integer}
$$

$$
|\cos\alpha| \le 1 \Rightarrow M = 0, \pm 1, \pm 2 \Rightarrow \alpha = 0, \ \pi/3, \ \pi/2, \ 2\pi/3, \ \pi
$$
Either no rotational symmetry or C_2 , C_3 , C_4 , C_6 .