Applications of group theory in spectroscopy

Igor Mazets

Atominstitut, TU Wien http://atomchip.org/theory/lectures/

WS 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

What is a group?

A group is a set $\mathcal G$ with the following properties:

▶ A group operation ("multiplication") is defined. It maps each ordered pair of group elements to another group element (called a product):

 $\forall f \in \mathcal{G}, g \in \mathcal{G} \exists$ one and only one $h = fg \in \mathcal{G}$ (in a general case $f\mathbf{g} \neq \mathbf{g}f$)

▶ Associativity:

$$
(g_1g_2)g_3=g_1(g_2g_3)
$$

▶ Identity element *e*: $\exists e \in G : \forall f \in G$ fe = ef = f

▶ Inverse element: $\forall f \in \mathcal{G} \,\, \exists f^{-1} \in \mathcal{G}$:

$$
ff^{-1}=f^{-1}f=e
$$

Try to prove the uniqueness of e and f^{-1} . Und $(f^{-1})^{-1} = f$ **KORKARYKERKER POLO** If the number N of elements of $\mathcal G$ is finite, then $\mathcal G$ is called finite and N is its order; otherwise $\mathcal G$ is called infinite. If the multiplication is commutative, i.e., $\forall f \in \mathcal{G}, g \in \mathcal{G}$ fg = gf, then the group is called Abelian.

Examples:

- ▶ Real numbers comprise a group w.r.t. addition, zero is the identity element
- ▶ Positive real numbers: arithmetic multiplication; 1 is the identity element
- ▶ Vectors (translations) in a D-dimensional space w.r.t. addition
- ▶ Rotations in a D-dimensional space
- **•** Permutations of *n* objects (symmetric group S_n)

Which of these groups are Abelian?

Simplest non-trivial example: a group consisting of two elements e and $f = f^{-1}$ (e.g., inversion; S_n)

Conjugate elements

An element g is conjugate to h if $\exists x \in \mathcal{G}$: $xgx^{-1} = h$

- ▶ *h* is also conjugate to *g*, since $x^{-1}hx = g$
- ▶ each element is conjugate to itself
- ▶ If g is conjugate to h then g^{-1} is conjugate to h^{-1}
- \triangleright If g is conjugate to h and h is conjugate to i then g is conjugate to i (try to prove this)

All elements of a group that are mutually conjugate comprise a class.

A group is thus partitioned into different classes.

The class containing the identity element consists of e only, since $\forall x \; x \in x^{-1} = e$.

For Abelian groups, each class consists of a single element only.

KORKAR KERKER SAGA

Subgroups

If $\mathcal{B} \subseteq \mathcal{G}$ is a group with respect to the same group operation. then β is a subgroup of $\mathcal G$

Examples:

- \blacktriangleright {e} is a trivial subgroup of every group
- ▶ Integer numbers (or rational numbers) in a group of real numbers
- ▶ Rotations around a given axis in a group of all rotations in 3D
- \triangleright Permutations that do not involve certain object(s)

Lagrange's theorem: If $\mathcal G$ is a finite group of order n and β is its subgroup of order m, then n/m is integer.

Corollary: If n is a prime number, than $\mathcal G$ has no non-trivial subgroups.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Cyclic subgroups

$a \in \mathcal{G}$

Elements e, a^n , $(a^{-1})^n$, where $n = 1, 2, 3, \ldots$ are all natural numbers, comprise a cyclic subgroup.

If $\mathcal G$ is finite, there is a finite number of different powers of a and there is the smallest number p such that $a^p = e$. Then the cyclic subgroup is $\{e, a, a^2, \ldots a^{p-1}\}.$

1. Find examples of cyclic subgroups

2. If an order of a finite group is a prime number, what can we say about its cyclic subgroups?

KORKAR KERKER ST VOOR

Homomorphism and isomorphism

Let $\mathcal G$ be a group with a group operation \cdot H be a group with a group operation $*$ φ a function $\mathcal{G} \mapsto \mathcal{H}$. There is a homomorphism from $\mathcal G$ to $\mathcal H$ if

$$
\forall f \in \mathcal{G}, g \in \mathcal{G} \quad \varphi(f \cdot g) = \varphi(f) * \varphi(g).
$$

If there is one-to-one correspondence between the elements of $\mathcal G$ and H, that is, not only $\varphi: \mathcal{G} \mapsto \mathcal{H}$ exists, but also φ^{-1} : $\mathcal{H} \mapsto \mathcal{G}$, then these two groups are isomorphic. Any proposition, which is true for \mathcal{G} , is also true for the isomorphic group (up to the renaming elements and the group operation).

Find examples of isomorphic groups and of homomorphic, but not isomorphic groups.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +