Examples of groups

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Symmetric group

Cycles Consider a certain permutation (of numbers from 1 to n) \hat{P} :

$$\hat{P}k = m_k$$

$$\hat{P} \equiv \left(\begin{array}{cccc} 1 & 2 & \dots & n \\ m_1 & m_2 & \dots & m_n \end{array}\right)$$

Take certain m_0 from 1 to n:

$$m_0, m_1 = \hat{P}m_0, \ldots, m_p = \hat{P}m_{p-1}$$

We stop when m_p equals one of the previously used numbers. Namely, $m_p = m_0$ (*Prove it!*) $m_0, m_1, \ldots, m_{p-1}$ comprise a cycle of length p.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Taking a number not belonging to the already constructed cycle, we can create another cycle for the same \hat{P} and so on. For given \hat{P} , the numbers from 1 to n can be organized in cycles in one and only one way. If $Pm_k = m_k$ then this cycle consists of only one number.

Convenient notation: permutation as a product of cycles (single-number cycles may be omitted, for the sake of brevity).

$$\hat{P} \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \equiv (12)(34)$$
$$\hat{P} \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} \equiv (1342)$$
$$\hat{P} \equiv \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \equiv (24)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conjugate permutations: $\hat{Q}\hat{P}\hat{Q}^{-1}$

$$\hat{P}m_1 = m_2$$

 $\hat{Q}\hat{P}\hat{Q}^{-1}(\hat{Q}m_1) = \hat{Q}\hat{P}m_1 = \hat{Q}m_2$
If $\hat{P} = (m_1, \dots, m_j) \dots (m_l, \dots, m_{l+i})$ then
 $\hat{Q}\hat{P}\hat{Q}^{-1} = (\hat{Q}m_1, \dots, \hat{Q}m_j) \dots (\hat{Q}m_l, \dots, \hat{Q}m_{l+i})$

All conjugate permutations have the same structure of cycles.

Classes

All permutations of S_n can be organized in classes with the same structure of cycles. Partition of an integer n:

a tition of an integer n.

$$n = l_1 + l_2 + \cdots + l_j, \qquad l_1 \ge l_2 \ge \cdots \ge l_j$$

Graphically shown as a Young diagram. # of classes = # number of partitions.

If two permutations belong to the same class, they are conjugate.

If $\hat{P} = (m_1, \dots, m_j) \dots (m_l, \dots, m_{l+i}),$ and $\hat{P}' = (m'_1, \dots, m'_j) \dots (m'_l, \dots, m'_{l+i})$ then

provides conjugation.

Group SO(3) of rotations of 3D vectors

 \blacktriangleright SO(3) is non-Abelian

Rotation is given by 3 parameters: (i) 2 angles giving the axis direction + rotation angle (ii) 3 Euler angles

Rotations to the same angle $\mathsf{0} \leq \alpha < 2\pi$ around all possible axes comprise a class.

Orthogonal group

$$O(3) = \mathcal{I} \otimes SO(3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Here $\mathcal I$ is the inversion group. Inversion commutes with all rotations.