Quantum theory of angular momentum

Igor Mazets
igor.mazets@tuwien.ac.at
(Atominstitut TU Wien, Stadionallee 2, 1020 Wien)

Time: Friday, 14:00-16:00
Place: Atominstitute, Library (1st floor) (exceptional dates: TBA)

Lecture notes:
http://atomchip.org/theory/lectures/

Recommended literature

1. Varshalovich, Moskalev, Khersonsky „Quantum theory of angular momentum"
other specialized literature:
2. Edmomds „Angular momentum in quantum mechanics"
3. Fano \& Racah „Irreducible tensorial sets"
4. Wigner „Group theory"
some material in standard courses:
5. Landau \& Lifshitz „Quantum Mechanics"
6. Akhiezer \& Berestetsky „Quantum Electrodynamics"
...and in any other q.m.-textbook where you can find it...

0. Notation

Vector component
Vector

$$
\begin{gathered}
\mathbf{A}=\sum_{\alpha} A_{e_{\alpha}^{\alpha}}^{\mathbf{e}_{\alpha}}=\sum_{\alpha}^{L_{\alpha}} A_{\alpha} \mathbf{e}^{\boldsymbol{\alpha}} \\
\mathbf{e}_{\mu} \mathbf{e}^{v}=\delta_{\mu \nu} \quad \text { Upper }_{\text {index }} \text { - covariant } \\
\boldsymbol{A}_{\boldsymbol{\alpha}}=\mathbf{A} \cdot \mathbf{e}_{\boldsymbol{\alpha}}, \quad \boldsymbol{A}^{\boldsymbol{\alpha}}=\mathbf{A} \cdot \mathbf{e}^{\boldsymbol{\alpha}}
\end{gathered}
$$

Coordinate system

Cartesian

$\left[\mathbf{e}_{i} \times \mathbf{e}_{k}\right]=\underset{\uparrow}{\varepsilon_{i k l}} \mathbf{e}_{l}, \quad(i, k, l=x, y, z)$
spherical

$$
\begin{gathered}
{\left[e_{r} \times e_{\vartheta}\right]=e_{\varphi},\left[e_{\vartheta} \times e_{\varphi}\right]=e_{r}} \\
{\left[e_{\varphi} \times e_{r}\right]=e_{\vartheta}}
\end{gathered}
$$

Cyclic coordinates

$$
x_{+1}=-\frac{1}{\sqrt{2}}(x+i y)=-\frac{1}{\sqrt{2}} r \sin \vartheta e^{i \varphi}
$$

Covariant

$$
\begin{aligned}
x_{0} & =2=r \cos \vartheta \\
x_{-1} & =\frac{1}{\sqrt{2}}(x-i y)=\frac{1}{\sqrt{2}} r \sin \vartheta e^{-i \varphi} .
\end{aligned}
$$

$$
x^{+1}=-\frac{1}{\sqrt{2}}(x-i y)=-\frac{1}{\sqrt{2}} r \sin \vartheta e^{-i \varphi}
$$

Contravariant

$$
\begin{aligned}
& x^{0}=z=r \cos \vartheta \\
& x^{-1}=\frac{1}{\sqrt{2}}(x+i y)=\frac{1}{\sqrt{2}} r \sin \vartheta e^{i \varphi}
\end{aligned}
$$

$$
\begin{array}{lll}
x^{\mu}=(-1)^{\mu} x_{-\mu}, & x_{\mu}=(-1)^{\mu} x^{-\mu}, & (\mu= \pm 1,0) \\
x^{\mu}=x_{\mu}^{*}, & x_{\mu}=x^{\mu *}, &
\end{array}
$$

Cyclic unit vectors

$$
\mathbf{e}_{+1}=-\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}+i \mathbf{e}_{y}\right)
$$

Covariant

$$
\begin{aligned}
& \mathbf{e}_{0}=\mathbf{e}_{z} \\
& \mathbf{e}_{-1}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}-i \mathbf{e}_{y}\right) .
\end{aligned}
$$

Contravariant

$$
\mathbf{e}^{+\mathbf{1}}=-\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}-i \mathbf{e}_{y}\right)
$$

$$
\begin{aligned}
& \mathbf{e}^{0}=\mathbf{e}_{z} \\
& \mathbf{e}^{-\mathbf{1}}=\frac{1}{\sqrt{2}}\left(\mathbf{e}_{x}+i \mathbf{e}_{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{e}^{\mu}=(-1)^{\mu} \mathbf{e}_{-\mu}, \quad \mathbf{e}_{\mu}=(-1)^{\mu} \mathbf{e}^{-\mu}, \quad(\mu= \pm 1,0) \\
& \mathbf{e}^{\mu}=\mathbf{e}_{\mu}^{*}, \quad \mathbf{e}_{\mu}=\mathbf{e}^{\mu \cdot *}, \\
& \mathbf{e}_{\mu} \mathbf{e}^{\nu}=\mathbf{e}_{\mu} \mathbf{e}_{\nu}^{*}=\delta_{\mu \nu}
\end{aligned}
$$

I. Rotation operation

An isolated quantum system in a 3D space ($r=$ all variables)
$\hat{H} \Psi_{\varepsilon \pi \alpha j m}(r)=\varepsilon \Psi_{\varepsilon \pi \alpha j m}(r)$,
$\hat{P}_{r} \Psi_{\text {e } \pi \alpha j m}(r)=\pi \Psi_{\text {e } \pi \alpha j m}(r)$,
$\mathbf{J}^{2} \Psi_{\varepsilon \pi \alpha j m}(r)=j(j+1) \Psi_{\varepsilon \pi \alpha, j m}(r)$, Square of the total angular momentum
$\hat{J}_{z} \Psi_{\varepsilon \pi \alpha j m}(r)=m \Psi_{\varepsilon \pi \alpha j m}(r)$.

Energy

Parity

Ang.momentum projection to z axis

How is the wave function transformed under a rotation of the co-ordinate system?

We consider passive rotations: the physical system remains at rest, but the coordinate system is rotated.

What we do (starting with a function of co-ordinates of a single particle):

1. Perform co-ordinate system rotation, calculate the new $\mathbf{r}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ as a function of $\mathbf{r}=(x, y, z), \omega$, and \mathbf{n}.
2. Choose an arbitrary (differentiable) function Ψ.
3. Find, which operator relates this function in the new coordinates to the same function in the old co-ordinates:

$$
\Psi\left(\mathbf{r}^{\prime}\right)=\hat{D}(\omega, \mathbf{n}) \Psi(\mathbf{r})
$$

Again, consider \mathbf{r} as a value parametrized by the variable ω and finally reaching \mathbf{r}^{\prime}. Then

$$
\frac{d}{d \omega} \Psi(\mathbf{r})=\frac{\partial \hat{D}(\omega, \mathbf{n})}{\partial \omega} \Psi(\mathbf{r})
$$

$$
\begin{aligned}
\frac{d}{d \omega} \Psi(\mathbf{r}) & =\frac{d \mathbf{r}}{d \omega} \nabla \Psi(\mathbf{r})=\sum_{\alpha=x, y, z} \frac{d x_{\alpha}}{d \omega} \frac{\partial}{\partial x_{\alpha}} \Psi(\mathbf{r})= \\
& =\sum_{\alpha=x, y, z} \mathbf{r}\left[\mathbf{n} \times \mathbf{e}_{\alpha}\right] \frac{\partial}{\partial x_{\alpha}} \Psi(\mathbf{r})=\mathbf{r}[\mathbf{n} \times \nabla] \Psi(\mathbf{r})=-\mathbf{n}[\mathbf{r} \times \nabla] \Psi(\mathbf{r})
\end{aligned}
$$

Recall the orbital momentum operator

$$
\hat{\mathbf{L}}=-i[\mathbf{r} \times \nabla] .
$$

Then one can see that

$$
\begin{aligned}
& \frac{\partial \hat{D}(\omega, \mathbf{n})}{\partial \omega}=-i \mathbf{n} \hat{\mathbf{L}} \hat{D}(\omega, \mathbf{n}), \hat{D}(0, \mathbf{n})=1 \\
& \hat{D}(\omega, \mathbf{n})=\exp (-i \omega \mathbf{n} \hat{\mathbf{L}})
\end{aligned}
$$

The latter equation holds in a case of a function of co-ordinates of N particles.
In that case $\hat{\mathbf{L}}=\sum_{j=1}^{N} \hat{\mathbf{L}}^{(j)}$ is the total orbital momentum.

$$
\left[\hat{\mathbf{L}}, \hat{\mathbf{L}}^{2}\right]=0
$$

Therefore an eigenfunction of the operator $\hat{\mathbf{L}}^{2}$ with the eigenvalue $=L(L+1)$ is transformed after a rotation into a linear combination of the eigenfunctions with the same total orbital momentum L.
There are in total $2 L+1$ different functions for a given L, characterized by $L_{z}=-L,-L+1, \ldots, L-1, L$.
How to interprete and extend this observation?

Rotations as a group

Definition of a group.
Group is a set \boldsymbol{G}. An operation • (the group law) is defined so that 1. If $a \in G$ and $b \in G$ then $a \cdot b \in G$.
2. Associativity: $\forall\{a, b, c\} \subset G$ we have $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.
3. Identity element: $\exists e \in \boldsymbol{\mathcal { G }}$ such that $\forall a \in \boldsymbol{\mathcal { G }}$ we have $e \cdot a=a \cdot e=a$. In fact, the identity element is always unique.
4. Inverse element: $\forall a \in \mathcal{G}$ an element $a^{-1} \in \mathcal{G}$ exists, such that

$$
a^{-1} \cdot a=a \cdot a^{-1}=e .
$$

The rotations satisfy all these requirements, the operation \bullet being a subsequent performance of two rotations.

Every group can be characterized by its irreducible representations.
An irreducible representation is a set of objects where a linear combination is defined and
(i) that is mapped to itself under action of any element of the group (representation), but
(ii) it is impossible to make (by constructing linear combinations) its subset, which also would be a representation (irreducibility).

The irreducible representations (IRs) of the rotation group have dimensions $1,2,3,4, \ldots$, each dimension appearing only once.

Odd-dimensional IRs can be associated with a system characterized by an integer angular momentum (realizable by the orbital momentum).
The even-dimensional IRs can be associated with a system with a half-integer angular momentum (realizable by the spin of a fermion).

Then in a general case

$$
\hat{D}(\omega, \mathbf{n})=\exp (-i \omega \mathbf{n} \hat{\mathbf{J}})
$$

where $\hat{\mathbf{J}}$ is the angular momentum operator (without concretization of its orbital, spin or composite nature).

$$
\left[\hat{J}_{\alpha}, \hat{J}_{\beta}\right]=i \varepsilon_{\alpha \beta \gamma} \hat{J}_{\gamma}
$$

Euler angles
Alternatively, a rotation may be defined with three Euler angles.
Scheme A:

(i) Rotation around z by
(ii) Rotation around new
(iii) Rotation around final
y_{1} by $\beta(0 \leq \beta<\pi)$.
$z_{2}=z^{\prime}$ by $\gamma(0 \leq \gamma<2 \pi)$.

Scheme B (equivalent to A, angles are the same). Three rotations around the old axes.

(i) Rotation around z by $\gamma(0 \leq \gamma<2 \pi)$.

(ii) Rotation around y by $\beta(0 \leq \beta<\pi)$.

(iii) Rotation around z by
$\alpha(0 \leq \alpha<2 \pi)$.

The same rotation is achieved also with $\alpha^{\prime}=\alpha+\frac{\pi}{2}, \quad \beta^{\prime}=\beta, \quad \gamma^{\prime}=\gamma-\frac{\pi}{2}$ The polar angles of an arbitrary directions in $S^{\prime}\left\{x^{\prime}, y^{\prime}, z^{\prime}\right\}$ and $S\{x, y, z\}$ are related as

$$
\begin{gathered}
\cos \vartheta^{\prime}=\cos \vartheta \cos \beta+\sin \vartheta \sin \beta \cos (\varphi-\alpha) \\
\operatorname{ctg}\left(\varphi^{\prime}+\gamma\right)=\operatorname{ctg}(\varphi-\alpha) \cos \beta-\frac{\operatorname{ctg} \vartheta \sin \beta}{\sin (\varphi-\alpha)}
\end{gathered}
$$

From now on, we put Euler angles as the arguments of the rotation operator $\hat{D}(a, \beta, \gamma)$ A function in the new coordinates and an operator are expressed as

$$
\Psi^{\prime}=\hat{D}(\alpha, \beta, \gamma) \Psi, \quad O^{\prime}=\hat{D}(\alpha, \beta, \gamma) O[\hat{D}(\alpha, \beta, \gamma)]^{-1}
$$

(3) Rotation around final $z_{2}=z^{\prime}$ by $\gamma(0 \leq \gamma<2 \pi)$.
(scheme A)
(1) Rotation around z by

$$
\alpha(0 \leq \alpha<2 \pi) .
$$

Try to prove their equivalence!
(scheme B)
(3) Rotation around z
by $\alpha(0 \leq \alpha<2 \pi)$.

> (2) Rotation around y
> by $\beta(0 \leq \beta<\pi)$.
(1) Rotation around z
by $\gamma(0 \leq \gamma<2 \pi)$.

Unitarity:
$\hat{D}^{+}(\alpha, \beta, \gamma)=[\hat{D}(\alpha, \beta, \gamma)]^{-1}=\hat{D}(\pi-\gamma, \beta,-\pi-\alpha)=\hat{D}(-\gamma,-\beta,-\alpha)$
Wigner D-function (definition)

$$
\left\langle J^{\prime} M^{\prime}\right| \hat{D}(\alpha, \beta, \gamma)|J M\rangle=\hat{o}_{J J^{\prime}} \quad D_{M^{\prime} M}^{J}(\alpha, \beta, \gamma)
$$

We denote by Ω the angular (orbital \& spin) variables of a system.

$$
\begin{aligned}
\left\langle\Omega^{\prime} \mid J M^{\prime}\right\rangle & =\langle\Omega| \hat{D}(\alpha, \beta, \gamma)\left|J M^{\prime}\right\rangle=\langle\Omega| \sum_{J^{\prime}} \sum_{M}\left|J^{\prime \prime} M\right\rangle\left\langle J^{\prime \prime} M\right| \hat{D}(\alpha, \beta, \gamma)\left|J M^{\prime}\right\rangle= \\
& \left.=\sum_{M}\langle\Omega \mid J M\rangle J M|\hat{D}(\alpha, \beta, \gamma)| J M^{\prime}\right\rangle=\sum_{M}\langle\Omega \mid J M\rangle D_{M M^{\prime}}^{J}(\alpha, \beta, \gamma)
\end{aligned}
$$

$$
\begin{gathered}
\Psi_{J M^{\prime}}\left(\vartheta^{\prime}, \varphi^{\prime}, \sigma^{\prime}\right)=\sum_{M=-J}^{J} \Psi_{J M}(\vartheta, \varphi, \sigma) D_{M M^{\prime}}^{J}(\alpha, \beta, \gamma) \\
{\left[\hat{D}^{-1}(\alpha, \beta, \gamma)\right]_{M M^{\prime}}^{J}=D_{M^{\prime} M}^{J^{*}}(\alpha, \beta, \gamma)} \\
\Psi_{J M}(\vartheta, \varphi, \sigma)=\sum_{M^{\prime}=-J}^{J} D_{M M^{\prime}}^{J *}(\alpha, \beta, \gamma) \Psi_{J M^{\prime}}\left(\vartheta^{\prime}, \varphi^{\prime}, \sigma^{\prime}\right)
\end{gathered}
$$

