XI11. Schwinger model for the angular
momentum operator

Consider two independent bosonic modes described by annihilation/creation operator
obeying the standard commutation relation:

[4,4*]1=1 [b,b*]=1, [4,b]=0, [4,b7]=0
Then one can show that the operators
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satisfy the commutation relation for the components of the angular momentum operator

3.,3.1=id,, [3,.3,1=i3,, [3,.9,1=id..

Also [j\g,j\z::(), €=X,y,Z, where
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Eigenvalues N of N are non-negative integers» the momentum J = N/2 is half-integer >O0.
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Holstein—Primakoff transformation

Mapping of quantum ang.momentum to bosonic annihilation/creation operators.
Consider | J, M = +J > as a vacuum state and, respectively, m = J — M as the number of
excitations. Introduce formally bosonic operators ¢, ¢, [e.éf] =1

|, M = J—m) = (m!)~2I™|vac)
Then, recalling the expression for the matrix elements of cyclic components of J we obtain
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This transformation is especially convenient for the small number of excitations, m << J,
A-I- ~

where one can expand these expressions in Taylor series in cc.
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XI1V. Quantum models to be mapped on

angular-momentum problems

(X1V.1) Two-mode Bose-Hubbard model (ultracold atoms in
a double well potential — the simplest, 2-mode description)
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(X1V.2) Dicke model

A two-level system consisting of two states, ground |g> and excited |e>, is formally
equivalent to a (pseudo)spin s = 1/2.

The raising operator _ 0 1
c' =S5 +i§, =
0 0
transformes |g> into |e>,
the lowering operator 0 0
o =§—i§, =
1 0

transforms |e> into [g>.
The operator of the population difference
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Hamiltonian of N two-level system with a single electromagnetic mode (practically, with a

cavity mode). We denote the photon annihilation operator by ¢ .
If we assume that the atom-photon coupling constant is the same for all atoms, this

Hamiltonian reads as (we set Planck’s constant /2 = 1)

ﬁ = LLJ{I a—+ Z[W'E}Szz + 29({1 + a)ST?]
1=1
Sum of individual spin operators yield the collective spin operator:

A

H = wila + wpS. + 2g(a' + a)S,

Since the e.m.-mode is close to the resonance, o = w,, we can use the rotating wave
approximation (RWA): _ _
What is the integral of

2 SRS DS T E— | A &+ motion of this

H = Wda ' a —i_ "’L’TDS,Z —i_ g(a S —I_ l S ) Hamiltonian?
Note: the same coupling constant for all atoms may be attained for a ring (running-wave)
cavity; the phase factors exp (ikr;) for different atoms can be included into the definition of
le>.
The use of the Holstein-Primakoff transformation reduces the Hamiltonian to one for two
bosonic fields (atomic excitations and phonons). How this bosonic Hamiltonian looks if the
number of at.excitations + the number of photons << N? In the case of small number of
excitations and phonons write the Hamiltonian in the case of non-equal coupling constant
(each atom possessing its own g;).



But N pseudospins s = 1/ 2 may be summed in different ways.

If they form a fully simmetrized state, i.e., characterized by the Young diagram {N}, then we
obtain max.possible collective spin S = N/2.

In a general case, for the Young diagram {N —m, m}, where m < N/2, we obtain

S=N/2-m.

In particular, for an even N and m = N/2 (the Young diagram consisting of two rows of the
equal length) S=0.

The rate I" of photon emission into the cavity mode is proportional to <§— Q‘)

If (almost) all atoms are in the |e> state, {";Q ~S ,then ['x S .
When in the course of evolution, almost half of the atoms decayed into the state |g>, i.e.,

when (S.) 2~ 0, weobtain T x S%.
The states with {1} = {N} and, hence, S = N/2 are called Dicke states. They are charcterized
by the maximum possible photon emission rate

<€)Z> ~ N/2 mm) [ x N  Atomsemit photons independently.

(C;;,;} ~ ( mm) [ N?%  Collective (enhanced) emission — superradiance.

The opposite limit: states with {1} = {N/2, N/2} for even N and, hence, S = 0, do not emit into
the cavity mode at all. Do they emit into other modes (side modes)? Why?



Single-electron qubits: besides the pseuspoin, there is the spin of electron
Wave function of N electrons:

[T) = Alehy) @ [1hy) © - -~ @ [90)
antisymmetrization

1) = |pseudospin;) ® |location;) & |spin;)

{xloc} {}‘spin}

IR tensor product (Ssymmetric group S,)

{}“pseudospin} {kpseudospin}
IR tensor product /(symmetric group S,)

M,1,1,..., 1= {1}



(X1V.3) Calculation of matrix elements of the contact interaction in
the basis of harmonic oscillator wave functions
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