
XIII. Schwinger model for the angular 
momentum operator

Consider two independent bosonic modes described by annihilation/creation operator 
obeying the standard commutation relation:

Then one can show that the operators 

satisfy the commutation relation for the components of the angular momentum operator

Also                                                               where                            

0]ˆ,ˆ[,0]ˆ,ˆ[,1]ˆ,ˆ[,1]ˆ,ˆ[ ==== +++ bababbaa

2
ˆˆˆˆˆ,

2
ˆˆˆˆˆ,

2
ˆˆˆˆˆ bbaaJ

i
abbaJabbaJ zyx

++++++ −
=

−
=

+
=

.ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[ yxzxzyzyx JiJJJiJJJiJJ ===

,,,,0]ˆ,ˆ[ 2 zyxJJ == 

bbaaNNNJJJJ zyx
ˆˆˆˆˆ,

2
ˆ

1
2
ˆˆˆˆˆ 2222 ++ +≡








+=++≡

Eigenvalues N of      are non-negative integers       the momentum J = N/2 is half-integer >0. N̂
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Holstein–Primakoff transformation
Mapping of quantum ang.momentum to bosonic annihilation/creation operators.
Consider | J, M = +J > as a vacuum state and, respectively, m = J – M as the number of 
excitations. Introduce formally bosonic operators

Then, recalling the expression for the matrix elements of cyclic components of      we obtain

This transformation is especially convenient for the small number of excitations, m << J, 

where one can expand these expressions in Taylor series in            . 



XIV. Quantum models to be mapped on 
angular-momentum problems

(XIV.1) Two-mode Bose-Hubbard model (ultracold atoms in 
a double well potential – the simplest, 2-mode description)
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(XIV.2) Dicke model 

A two-level system consisting of two states, ground |g> and excited |e>, is formally 
equivalent to a (pseudo)spin s = 1/2. 
The raising operator 

transformes |g> into |e>, 
the lowering operator 

transforms |e> into |g>. 
The operator of the population difference 
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Hamiltonian of N two-level system with a single electromagnetic mode (practically, with a 
cavity mode). We denote the photon annihilation operator by  .    
If we assume that the atom-photon coupling constant is the same for all atoms, this 
Hamiltonian reads as (we set Planck´s constant     )

Sum of individual spin operators yield the collective spin operator:

Since the e.m.-mode is close to the resonance, ω ≈ ω0, we can use the rotating wave 
approximation (RWA): 

Note: the same coupling constant for all atoms may be attained for a ring (running-wave) 
cavity; the phase factors exp (ikrj) for different atoms can be included into the definition of 
|e>.   
The use of the Holstein-Primakoff transformation reduces the Hamiltonian to one for two 
bosonic fields (atomic excitations and phonons). How this bosonic Hamiltonian looks if the 
number of at.excitations + the number of photons << N? In the case of small number of 
excitations and phonons write the Hamiltonian in the case of non-equal coupling constant 
(each atom possessing its own gj). 

What is the integral of 
motion of this 
Hamiltonian?  



But N pseudospins s = 1/ 2 may be summed in different ways. 
If they form a fully simmetrized state, i.e., characterized by the Young diagram {N}, then we 
obtain max.possible collective spin S = N/2. 
In a general case, for the Young diagram {N – m, m}, where m < N/2, we obtain 
S = N/2 – m.
In particular, for an even N and m = N/2 (the Young diagram consisting of two rows of the 
equal length) S = 0. 

The rate Γ of photon emission into the cavity mode is proportional to                  . 

If (almost) all atoms are in the |e> state,   , then . 
When in the course of evolution, almost half of the atoms decayed into the state |g>, i.e., 

when          , we obtain                 . 
The states with {λ} = {N} and, hence, S = N/2 are called Dicke states. They are charcterized 
by the maximum possible photon emission rate 

The opposite limit: states with {λ} = {N/2, N/2} for even N and, hence, S = 0, do not emit into 
the cavity mode at all. Do they emit into other modes (side modes)? Why?

Atoms emit photons independently.

Collective (enhanced) emission – superradiance. 



Single-electron qubits: besides the pseuspoin, there is the spin of electron
Wave function of N electrons:

{λloc}          {λspin}
IR tensor product (symmetric group SN)

{λpseudospin}
~{λpseudospin} 

IR tensor product    (symmetric group SN)

{1, 1, 1, ... , 1}≡ {1N} 

antisymmetrization



(XIV.3) Calculation of matrix elements of the contact interaction in 
the basis of harmonic oscillator wave functions



Schwinger model:

etc.



x1,  x2 – „new“ co-ordinates,           x – ,  x+ – „old“ co-ordinates     

In our case



In the dimensionless form: 



DM 
J
M ´ (0,β,0) ≡ dM 

J
M ´ (β) can be expressed via

• Jacobi polynomials

• hypergeometric function


	XIII. Schwinger model for the angular momentum operator
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

