
(XII.1). Symmetric group

XII. Addition of many identical spins

Symmetric group Sn is the group of all possible permutations of n objects.
In total n! elements (including identity operation). 
Each permutation is a product of a certain finite number of pairwise
transpositions. For a given permutation, this number is always even or always 
odd (the same permutation can be achieved by different sequencies of 
transpositions). Therefore, we can speak about even and odd permutations. 
The sign of a permutation P: 
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Irreducible representations of the symmetric group
IRs of Sn correspond to conjugacy classes of Sn and are labelled by a partition of 
the integer, positive number n. 
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We order these integer number as

This partition can be represented graphically by so-called Young diagrams. 
A Young diagram contains λj boxes in its jth row. 
Few examples: 

{2}                              {1,1}                                 {3,3,2,1,1}



Conjugate diagrams: rows ↔ colums, or, equivalently, reflection with respect 
to the diagonal                 .

{λ}={3,3,2,1,1}                                  {λ}={5,3,2}                      

Young tableau: a Young diagram (n boxes) filled with integer numbers 1,2, ... , n. 
Standard Young tableau: numbers in each row and in each column are placed in 
the increasing order. 
Example: all standard Young tableaux for {λ}={3,2}. 

1    2    3        1    2    4         1    2   5         1    3   4          1    3   5
4    5              3    5               3   4               2    5               2    4

~

Conjugation is denoted by ~



The dimension d{λ} of an IR of Sn characterized by the Young diagram {λ} is equal 
to the number of corresponding standard Young tableaux. 
The dimensions of IRs characterized by conjugate Young diagrams are the same, 

Note that 

Hook length h(j) of the jth box of a Young diagram: 

h(j) = number of boxes to the right in the row + 
+ number of boxes below in the column + 1 

Hook length for some {λ} 
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2    2  1     3  2  1   3  1    3    4  3  1    5  4  1

1                       1       2    2  1       3  2

1               2  1

An easier way to calculate d{λ} is 
given by a theorem:
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(XII.2). Systems of identical particles.
Consider n identical particles with the spin s. 
Simultaneous permutation of both co-ordinates rj and spin variables σj of each pair 
of particles multiplies the n-particle wave function by +1 if s is integer (bosons, B) 
and by – 1 if s is half-integer (fermions, F). 
A wave function satisfying this symmetry requirement can be constructed in many 
ways, corresponding to various Young diagrams  

Here sum is taken over all d{λ} standard Young tableaux, where we use spin 
variables σj instead of numbers j = 1,2, ... , n to fill the boxes, when we construct 
the  spin part X. The co-ordinate part is obtained by replacing the spin variables 
with the co-ordinates and, in the case of fermions only, by conjugating the Young 
tableau. 
We focus on the construction of the spin part X of the wave function, the co-
ordinate part being built in a similar way.   
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1. Choose a certain standard Young tableau, like that:

2. Construct a product of single spin wave functions 

where ms
j = – s, – s +1, ... , s – 1, s is the projection of the spin of the jth 

particle to the quantization axis. 

3. Apply to this product a Young symmetrizer. 

For a given Young tableau we select from all n! permutations only those operations 
(including the identity operation!), which do not permute spin variables belonging to 
different rows. We denote these permutations by Pr .
How many are there Pr ´s?
Also we select permutations (including identity!), which do not permute spin 
variables belonging to different columns, denoting them by Pc .
How many are there Pc ´s?
Then, summing by all possible Pr and Pc , we define the Young symmetrizer: 

σ1  σ3 σ6

σ2  σ4

σ5  σ7
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Spin wave function

The maximum number of row in {λ} is 2s + 1, since antisymmetrization over 
variables in columns containing more than 2s + 1 will require antisymmetrization 
over arguments σj and σi of two functions < σj | s ms > and < σi | s ms > with the 
same ms . The result of the antisymmetrization will then be identically zero. 
In particular, for spin-1/2 particles, such as electrons, the spin wave function can 
be characterized by Young diagrams with 1 row (fully symmetric) or 2 rows only.

It is possible to calculate, which values of the total spin S built from n identical 
spins s correspond to a given Young diagram. 
If the total spin S appears WS{λ} times for the {λ}-type wave function than, 
obviously  
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For s = ½, unlike other (non-zero) values of particle spin, there is a one-to-one 
correspondence between {λ} and S.  
The rule: 
If we add to a state of n spin-½ particles with the total spin S and {λ} = {λ1, λ2}, 

λ1 + λ2 = n,  a new particle of the same kind, then we obtain the states:
1) {λ1+1, λ2}, S + ½ ,
2) {λ1, λ2+1}, S – ½ .                The variant (2) is possible for λ1 > λ2 only. 

Recall that W shows how many times the total spin S appears for a given {λ}. 



Addition of spins  s = 1/2. 

Young diagrams not 
appearing for s = 1/2 

S=1/2, W=1

S=1, W=1

S=0, W=1

S=3/2, W=1

S=1/2, W=1+1 = 2

S= 2, W=1

S=1, W=1+2 =3

S=0, W=2

...and so on.

For s > 1/2, for a 
given {λ}
W may be non-zero 
for different S



Explicit construction of wave functions of many spins s = ½ 
For each particle two states: „spin up“  and „spin-down“.
Spin-lowering operator for jth particle: 

Collective spin-lowering operator:

The highest possible S = n/2 corresponds to the fully symmetrized state 
(Young diagram {n} consists of a single row). 

The highest possible collective spin projection M = +S = +n/2: all atoms 
in the spin-up state.

Applying the collective spin-lowering operator, we decrease M by 1: 
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But there are n linearly independent states with M = (n/2) – 1:  one spin down, all 
other spins up: 

From them we can construct (n – 1) linearly independent functions orthogonal to

These (n – 1) functions are to be identified as different realizations of S = (n/2) – 1 
for the Young diagram {n – 1, 1}. 
We apply σ – once again and obtain n functions for the states with S = n/2 and 
S=(n/2) – 1 with the total spin projection M = (n/2) – 2.
But there are n(n –1)/2 lin.independent states with 2 spins down and (n – 1) spins 
up. By orthogonalizing them to the already defined states, we obtain 

n(n –1)/2 – n = n(n –3)/2 states for S = (n/2) – 2 and {λ} = {n – 2, 2}. 

{λ} = {n – m, m}, where m is integer and m < n/2 corresponds to S = (n/2) – m.

Calculate W{λ}, S for {λ} = {n – m, m}, S = (n/2) – m.
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