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I. Introduction
Scientific and technological progress in the last decades has proven that
miniaturization and integration are important steps towards the robust application
of fundamental physics, be it electronics and semiconductor physics in integrated
circuits, or optics in micro-optical devices and sensors. The experimental effort
described in this work aims at achieving the same for matter wave optics.
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Matter wave optics beautifully illustrates quantum behavior. Realizations
using neutral atoms are attractive because of the well established techniques of
coherently manipulating internal and external degrees of freedom, and their weak
coupling to the environment. Miniaturizing electric and magnetic potentials is
essential to building versatile traps and guides for atoms at a scale <1mm which
will enable controlled quantum manipulation and entanglement. Integration with
other quantum optics, micro-optics and photonics techniques will allow for
robust creation, manipulation and measurement of atomic quantum states in these
microtraps. In our vision we see a monolithic integrated matter wave device
which will allow us to establish a new experimental toolbox and enable new
insights into fundamental quantum physics, for example in issues such as deco-
herence, entanglement and nonlinearity, low-dimensional mesoscopic systems,
and degenerate quantum gases (Bosons and Fermions) beyond mean-field theory.
A successful implementation may lead to widespread applications from highly
sensitive sensors (time and acceleration) to quantum information technology.
The goal of this review is to sum up the 10 year long exciting journey into

the miniaturization and integration of matter wave optics resulting in devices
mounted on surfaces, so called atom chips. It brought together the best of two
worlds: the vast knowledge of quantum optics and matter wave optics and the
mature techniques of microfabrication.
The first experiments started in the early 1990s with the guiding of atoms

along free-standing wires and investigating the trapping potentials in simple ge-
ometries. This later led to the microfabrication of atom-optical elements down to
1mm size on atom chips. Very recently the simple creation of Bose–Einstein con-
densates in miniaturized surface traps was demonstrated, and the first attempts
to integrate light optics on the atom chip are in progress. Even though there are
many open questions, we firmly believe that we are only at the beginning of a new
era of robust quantum manipulation of atomic systems with many applications.
The review is organized as follows. We begin in Sect. II by describing

microscopic atom-optical elements using current-carrying and charged structures
that act as sources for electric and magnetic fields which interact with the atom.
In the following sections we describe first the experiments with free-standing
structures – the so called atom wires (Sect. III), investigating the basic principles
of microscopic atom optics, and then the miniaturization on the atom chip
(Sect. IV). In Sect. V we discuss one of the central open questions: what happens
with cold atoms close to a warm surface, how fast will they heat up, and how
fast will they lose their coherence? The role of technical noise, the fundamental
noise limits and the influence of atom–atom and atom–surface interactions are
discussed. We conclude with an outlook of what we believe the future directions
to be, and what can be hoped for (Sect. VI).
The scientific progress regarding manipulation of atoms close to surfaces

has been enormous within the last decade. Besides the atom wire and atom
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chip described here, it covers a whole spectrum: from reflection experiments on
atom mirrors to studying Van der Waals interactions and quantum reflection;
from using micromagnets to trap atoms to employing evanescent light field
traps. Many of these have been reviewed recently and will not be included
here. We will almost exclusively concentrate on manipulation of atoms with
static microscopic electric and magnetic fields created by charged and/or current-
carrying (microscopic) structures. For related experiments and proposals, which
are not discussed in this review, we refer the reader to the excellent reviews
referenced throughout the text, e.g. Dowling and Gea-Banacloche (1996), Grimm
et al. (2000), Hinds and Hughes (1999).

II. Designing Microscopic Atom Optics

Neutral atoms can be manipulated by means of their interaction with magnetic,
electric, and optical fields. In this review the emphasis is put on the magnetic
and the electric interaction. The designing of traps and guides using charged and
current-carrying structures and the combination of different types of interaction
to form devices for guided matter wave optics are discussed. It is shown how
miniaturization of the structures leads to great versatility where a variety of
potentials can be tailored at will. We start with some general statements and
then focus on the concepts that are important for surface-mounted structures
and address issues of miniaturization and its technological implications.

A. Magnetic Interaction

A particle with total spin F and magnetic moment m = gFmBF experiences the
potential

Vmag = −m · B = −gFmBmFB, (1)

where mB is the Bohr magneton, gF the Landé factor of the atomic hyperfine
state, and mF the magnetic quantum number. In general, the vector coupling m · B
results in a complicated motion of the atom. However, if the Larmor precession
(wL = mBB/à) of the magnetic moment is much faster than the apparent change of
direction of the magnetic field in the rest frame of the moving atom, an adiabatic
approximation can be applied. The magnetic moment then follows the direction
of the field adiabatically, mF is a constant of motion, and the atom is moving in
a potential proportional to the modulus of the magnetic field B = |B|.
Depending on the orientation of m relative to the direction of a static magnetic

field, one distinguishes two cases:
(1) If the magnetic moment is pointing in the same direction as the magnetic

field (Vmag < 0), an atom is drawn towards increasing fields, therefore it is in
a strong-field seeking state. This state is the lowest energy state of the system.
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Minima of the potential energy are found at maxima of the field. Maxima of the
magnetic field in free space are, however, forbidden by the Earnshaw theorem1.
This means that for trapping atoms in the strong-field-seeking state, a source
of the magnetic field, such as a current-carrying material object or an electron
beam, has to be located inside the trapping region.
(2) If the magnetic moment of an atom is pointing in the direction opposite

to the magnetic field (Vmag > 0), the atom is repelled from regions with high
magnetic fields; it is then in the metastable weak-field seeking state. In this case,
minima of the modulus of the field correspond to potential minima. Because a
minimum of the modulus of the magnetic field in free space is not forbidden
by the Earnshaw theorem, traps of this type are most common for neutral atom
trapping. Losses from the traps are a potential problem (see Sect. V), especially
when non-adiabatic transitions to the energetically lower high-field-seeking states
become likely in regions of low or even vanishing fields.

A.1. Kepler guide

A possible realization of a trap for an atom in the strong-field-seeking state is
a current-carrying wire with the atom orbiting around it (Vladimirskii, 1961;
Schmiedmayer, 1992, 1995a,b; Schmiedmayer and Scrinzi, 1996a,b; Denschlag,
1998; Denschlag et al., 1999b). The interaction potential is given by2

Vmag = −m · B = −
( m0
2p

)
Iw
1
r

ef · m, (2)

where Iw is the current through the wire, ef is the azimuthal unit vector in
cylindrical coordinates, and m0 = 4p mmG/A is the vacuum permeability.
This potential has the 1/r form of a Coulomb potential, but the coupling
m · B is vectorial. Using the adiabatic approximation, Vmag corresponds to a
2-dimensional scalar (1/r) potential, in which atoms move in Kepler orbits 3.
In the quantum regime, the system looks like a 2-dimensional hydrogen atom

in a (nearly circular) Rydberg state. The wire resembles the “nucleus” and

1 The Earnshaw theorem can be generalized to any combination of electric, magnetic and
gravitational fields (Wing, 1984; Ketterle and Pritchard, 1992).
2 This and all other expressions for magnetic and electric fields in this section are given in the limit
of an infinitely thin wire, unless stated otherwise.
3 From corrections to the adiabatic approximation to the next order, we obtain an effective
Hamiltonian for the orbital motion of the atom where the Coulomb-like binding potential is corrected
by a small repulsive 1/r2 interaction (Shapere and Wilczek, 1989; Aharonov and Stern, 1992; Stern,
1992; Littlejohn and Weigert, 1993; Schmiedmayer and Scrinzi, 1996a,b). As a result, the Kepler-
like orbits show an additional precession around the wire. A very similar potential can be realized
for small polar molecules with a permanent dipole moment interacting with the electric field of a
charged wire (Sekatskii and Schmiedmayer, 1996).
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Fig. 1. Guiding neutral atoms using a current carrying wire. (a) Guiding the atoms in their strong
field seeking state as they circle around the wire. (b) Atoms in the weak field seeking state can be
held in a 2-dimensional magnetic quadrupole field which is created by adding a constant bias field
to the wire field. Typical trajectories of atoms are shown on the right-hand side of the figure.

the atom takes the place of the “electron”. Considerable theoretical work has
been published on the quantum mechanical treatment of this system showing
a hydrogen-like energy spectrum (Pron’kov and Stroganov, 1977; Blümel and
Dietrich, 1989, 1991; Voronin, 1991; Hau et al., 1995; Burke et al., 1996; Berg-
Sørensen et al., 1996) with a characteristic quantum defect (Schmiedmayer and
Scrinzi, 1996a,b).
The magnetic field, the potential, and typical classical trajectories are

presented in Fig. 1a.

A.2. Side guide

Originally, Frisch and Segrè (1933) presented the idea that a straight current-
carrying wire (Iw) and a homogeneous bias field (Bb) pointing in a direction
orthogonal to the wire form a quadrupole field with a well-defined 2-dimensional
field minimum (Fig. 1b). The bias field cancels the circular magnetic field of the
wire along a line parallel to the wire at a distance

r0 =
( m0
2p

) Iw
Bb
. (3)

Around this line the modulus of the magnetic field increases in all directions and
forms a tube with a magnetic field minimum at its center. Atoms in the weak-
field seeking state can be trapped in this 2-dimensional quadrupole field and can
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Fig. 2. Upper left: potential for a side guide generated by one wire and an external bias field
perpendicular to the wire direction. The external bias field can be replaced by two extra wires (lower
left). Upper right: field configuration for a two-wire guide with an external bias field perpendicular
to the plane containing the wires. This external bias field may also be replaced by surface mounted
wires (lower right).

be guided along the side of the wire, i.e. in a side guide. At the center of the
trap the magnetic field gradient is

dB

dr

∣∣∣∣
r0

=

(
2p
m0

)
B2b
Iw
=
Bb
r0
. (4)

As long as the bias field is orthogonal to the wire, the two fields cancel exactly,
and trapped atoms can be lost due to Majorana transitions between trapped and
untrapped spin states (see Sect. V.A). This problem can be circumvented by
adding a small B-field component Bip along the wire direction which lifts the
energetic degeneracy between the trapped and untrapped states. This potential is
conventionally called a Ioffe–Pritchard trap (Gott et al., 1962; Pritchard, 1983;
Bagnato et al., 1987). At the same time, the potential form of the guide near the
minimum changes from linear to harmonic. The guide is then characterized by
the curvature in the transverse directions

d2B

dr2

∣∣∣∣
r0

=

(
2p
m0

)2 B4b
BipI 2w

=
B2b
r20Bip

. (5)

In the harmonic oscillator approximation, the trap frequency is given by

w
2p

=
1
2p

√
mBgFmF
M

(
d2B

dr2

)
∝ Bb
r0

√
1

MBip
, (6)

where M is the mass of the atom.
When mounting the wire onto a surface, the bias field has to have a component

parallel to the surface in order to achieve a side guide above the surface. The bias
field can be formed by two additional wires on each side of the guiding wire. The
direction of the current flow in these wires has to be opposite to the current in
the guiding wire (Fig. 2). This is especially interesting because the wires can be
mounted on the same surface (chip), and a self-sufficient guide can be obtained.
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A.3. Two-wire guides

A.3.1. Counter-propagating currents. A different way to create a guide is by
using two parallel wires with counter-propagating equal currents Iw with a bias
field which has a component Bb orthogonal to the plane containing the two wires
(Fig. 2) (Thywissen et al., 1999a).
The important advantage of this configuration is that the two wires and

therefore the atom guide can be bent in an arbitrary way in the plane
perpendicular to the bias field, whereas the single-wire guide direction is
restricted to angles close to the line perpendicular to the bias field. If there is
an additional bias field Bip applied along the wires, a Ioffe–Pritchard guide is
obtained. Again, two added wires can replace the external bias field (see Sect. IV
for an example of an experimental implementation).
The field generated by the wires compensates the bias field Bb at a distance

r0 =
d

2

√(
2m0
p

)
Iw
dBb

− 1, (7)

where d is the distance between the two wires. When Bb > 2m0Iw/pd, the field
from the wires is not capable of compensating the bias field. Two side guides
are then obtained, one along each wire in the plane of the wires.
In the case Bb < 2m0Iw/pd, the gradient in the confining directions is given

by
dB

dr

∣∣∣∣
r0

=

(
4p
m0

)
B2b
Iw

r0
d
. (8)

If there is a field component Bip along the wire, the position of the guide is
unchanged. However, the shape of the potential near its minimum is parabolic:
the curvature in the radial direction is given by

d2B

dr2

∣∣∣∣
r0

=

(
4p
m0

)2 B4b
BipI 2w

r20
d2
. (9)

In the special case of r0 = d/2, the gradient and, for the case of a non-vanishing
Bip, the curvature of the potential at the minimum position, are exactly equal to
the corresponding magnitudes for the single-wire guide.

A.3.2. Co-propagating currents. The magnetic fields formed by two parallel
wires carrying equal co-propagating currents vanishes along the central line
between the wires and increases and changes direction like a 2-dimensional
quadrupole. The wires form a guide as shown in Fig. 3 allowing atoms to
be guided around curves (Müller et al., 1999). It is even possible to hold
atoms in a storage ring formed by two closed wire loops (Sauer et al., 2001)
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a)

b)

c)

Track axis

Fig. 3. Atoms are guided in a two-wire guide that is self-sufficient without external bias fields.
Insets (a), (b) and (c) show the magnetic field contour lines for no bias, horizontal bias, and vertical
bias fields, respectively. Courtesy E. Cornell.

Fig. 4. Potential for a two-wire guide formed by copropagating currents. The plots show from
left to right the equipotential lines for increasing bias fields. As the field is raised, two (quadrupole)
minima approach each other in the vertical direction and merge at the characteristic bias field denoted
by B = 1 into a harmonic (hexapole) minimum. At higher bias fields this minimum splits into a
double (quadrupole) well again; this time the splitting occurs in the horizontal direction.

(Sect. III.A.7). When aiming at miniaturized, surface-mounted structures, the
fact that the potential minimum is located between the wires rather than above
them, has to be considered.
When a bias field parallel to the plane of the wires is added, the potential

minimum moves away from the wire plane and a second quadrupole minimum
is formed at a distance far above the wire plane where the two wires appear as a
single wire carrying twice the current (see side guide in Sect. II.A.2). Depending
on the distance d between the wires with respect to the characteristic distance

dsplit =
( m0
2p

) Iw
Bb

(10)

one observes three different cases (Fig. 4): (i) If d/2 < dsplit, two minima are
created one above the other on the axis between the wires. In the limit of d
going to zero, the barrier potential between the two minima goes to infinity and
the minimum closer to the wire plane falls onto it; (ii) if d/2 = dsplit, the two
minima fuse into one, forming a harmonic guide; (iii) if d/2 > dsplit, two minima
are created, one above each wire. Splitting and recombination can be achieved
by simply increasing and lowering the bias field (Denschlag, 1998; Zokay and
Garraway, 2000; Hinds et al., 2001).
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Table I
Typical potential parameters for wire guides, based on tested atom chip components a

Atom Wire
current
[mA]

Bias fields

Bb
[G]

Bip
[G]

Potential

Depth
[mK]

Distance
[mm]

Gradient
[kG/cm]

Ground state

Frequency
[kHz]

Size
[nm]

Lifetime
[ms]

Side guide b

Li 1000 80 2 5.4 25 32 100 120 >1000

Li 500 200 10 13 5 400 570 50 >1000

Li 200 400 30 27 1 4000 3300 21 7

Rb 1000 80 1 5.4 25 32 41 53 >1000

Rb 500 200 4 13 5 400 250 21 >1000

Rb 200 400 20 27 1 4000 1100 10 >1000

Rb 1000 2000 50 130 1 20000 3600 6 >1000

Two-wire guide c (counter-propagating currents)
Li 1000 80 2 5.4 25 32 100 120 >1000

Li 500 200 10 13 5 400 570 50 >1000

Li 100 130 10 8.7 1.5 870 1200 34 5

Rb 1000 80 1 5.4 25 32 41 53 >1000

Rb 500 200 4 13 5 400 250 21 >1000

Rb 100 130 5 8.7 1.5 870 490 15 185

a The parameters are given for the two different atoms lithium and rubidium, both assumed to be
in the (internal) ground state with the strongest confinement (F = 2, mF = 2). For both types
of guide, small bias-field components Bip pointing along the guide were added in order to get a
harmonic bottom of the potential and to enhance the trap life time that is limited by Majorana
spin flip transitions (see Eq. 18 in Sect. V). It was confirmed in a separate calculation that the
trap ground state is always small enough to fully lie in the harmonic region of the Ioffe–Pritchard
potential. See also Fig. 2.
b Side guide created by a thin current-carrying wire mounted on a surface with an added bias field
parallel to the surface but orthogonal to the wire.
c Two-wire guide created by two thin current-carrying wires mounted on a surface with an added
bias field orthogonal to the plane of the wires. In these examples the two wires are 10mm apart.

Finally we mention a proposal by Richmond et al. (1998) where a tube
consisting of two identical, interwound solenoids carrying equal but opposite
currents can be used as a weak-field-seeker guide. The magnetic field is almost
zero throughout the center of the tube, but it increases exponentially as one
approaches the walls formed by the current-carrying wires. Hence, cold low-
field-seeking atoms passing through the tube should be reflected by the high
magnetic fields near the walls, which form a magnetic mirror.
Examples of typical guiding parameters for the alkali atoms lithium and

rubidium trapped in single and two-wire guides are given in Table I. Trap
frequencies of the order of 1MHz or above can be achieved with moderate
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currents and bias fields. The guided atoms are then located a few mm from the
wire (above the surface).

A.4. Simple traps

An easy way to build traps is to start from the guides discussed above, and
close the trapping potential with ‘endcaps’. This can be accomplished by taking
advantage of the fact that the magnetic field is a vector field, and the interaction
potential is scalar (Eq. 1). By varying the angle between the wire and the bias
field, one can change the minimum of the potential and close the trap. Simple
geometries are either a straight guide and an inhomogeneous bias field, or a
homogeneous bias field in combination with a bent wire.

A.4.1. Straight guide and an inhomogeneous bias field. Traps formed by
superposing an inhomogeneous bias field and the field of a straight wire are based
on quadrupole fields because the complete change of direction in addition to the
inhomogenity is needed to close the trap. An interesting fact is that a current-
carrying wire on the symmetry axis of a quadrupole field can be used to ‘plug’
the zero of the field. In this configuration a ring shaped trap is formed (Fig. 5a)
that has been demonstrated experimentally (Denschlag, 1998; Denschlag et al.,
1999a). In the Tübingen (formerly Munich) group of C. Zimmermann a modified
version of this type of trap with the wire displaced from the quadrupole axis

a)

Iw

Bb

b)

Iw

Bb

c)

Iw

Bquad

Fig. 5. Creating wire traps: The upper row shows the geometry of various trapping wires,
the currents and the bias fields. The lower column shows the corresponding radial and axial
trapping potential. (a) A straight wire on the axis of a quadrupole bias field creates a ring-shaped
3-dimensional non-zero trap minimum. (b) A “U”-shaped wire creates a field configuration similar
to a 3-dimensional quadrupole field with a zero in the trapping center. (c) For a “Z”-shaped wire a
Ioffe–Pritchard type trap is obtained.
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(Fortagh et al., 1998, 2000) was used to create a Bose–Einstein condensate on
an atom chip (Ott et al., 2001).

A.4.2. Bent wire traps: the U- and Z-trap. 3-dimensional magnetic traps can be
created by bending the current-carrying wire of the side guide (Cassettari et al.,
1999; Reichel et al., 1999; Haase et al., 2001). The magnetic field from the bent
leads creates endcaps for the wire guide, confining the atoms along the central
part of the wire. The size of the trap along this axis is then given by the distance
between the endcaps. Here we describe two different geometries:
(1) Bending the wire into a “U”-shape (Fig. 5b) creates a magnetic field

that in combination with a homogeneous bias field forms a 3-dimensional
quadrupole trap 4. The geometry of the bent leads results in a field
configuration where a rotation of the bias field displaces the trap minimum
but the field always vanishes completely at this position.

(2) A magnetic field zero can be avoided by bending the wire ends to form a
“Z” (Fig. 5c). Here, one can find directions of the external bias field where
there are no zeros in the trapping potential, for example when the bias field is
parallel to the leads. This configuration creates a Ioffe–Pritchard type trap.
The potentials for the U- and the Z-trap scale similarly as for the side guide,

but the finite length of the central bar and the directions of the leads have to
be accounted for. Simple scaling laws only hold as long as the distance of the
trap from the central wire is small compared to the length of the central bar
(Cassettari et al., 1999; Reichel et al., 1999; Haase et al., 2001). Bending both
Z leads once more results in 3 parallel wires. This supplies the bias field for a
self-sufficient Z-trap.

A.4.3. Crossed wires. Another way to achieve confinement in the direction
parallel to the wire in a side guide is to run a current I1 < Iw through a second
wire that crosses the original wire at a right angle (Reichel et al., 2001). I1
creates a magnetic field B1 with a longitudinal component which is maximal at
the position of the side guide that is closest to the additional wire. Adding a
longitudinal component to the bias field, i.e. rotating Bb, results in an attractive
potential confining the atoms in all three dimensions. As a side effect position
and shape of the potential minimum are altered by the vertical component of B1.
Figure 6 illustrates this type of trap configuration. Experiments of the Munich
group have proven this concept to be feasible (see Sect. IV.C.1 and Fig. 34) and
it was suggested to use the two-wire cross as a basic module for implementing
complex trapping and guiding geometries.

4 The minimum of the U-trap is displaced from the central point of the bar, in a direction opposite
to the bent wire leads. A more symmetric quadrupole can be created by using 3 wires in an
H configuration. There the side guide is closed by the two parallel wires crossing the central wire
orthogonally. The trap is then in between the two wires, along the side guide wire.
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Fig. 6. Two geometries of crossed-wire traps: different cuts through the potential are displayed
without and with a longitudinal bias field component in the left and right column, respectively. The
1-dimensional plots show the potential along the direction of the side guide; in the contour plots
the wire configuration is illustrated by light gray bars. Courtesy J. Reichel.

A.5. Weinstein–Libbrecht traps

Even more elaborate designs for traps than those described previously can be
envisioned. For example, Weinstein and Libbrecht (1995) describe planar current
geometries for constructing microscopic magnetic traps (multipole traps, Ioffe–
Pritchard traps and dynamical traps). We focus here on the Ioffe–Pritchard trap
proposals. Figure 7 shows four possible geometries: (a) three concentric half
loops; (b) two half loops with an external bias field; (c) one half loop, one full
loop and a bias field; (d) two full loops with a bias field and external Ioffe
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a) b)

c) d)

Fig. 7. Four planar (and pseudoplanar) Ioffe trap configurations, as described in the text. Courtesy
J. Weinstein/K. Libbrecht.

bars. The first of these (a) is essentially a planar analog of the nonplanar Ioffe–
Pritchard trap with two loops and four bars. Configuration (b) replaces one of the
loops with a bias field. Configuration (c) is similar to (b) but provides a steeper
trapping potential on-axis and weaker trapping in the perpendicular directions;
this makes an overall deeper trap with greater energy-level splitting for given
current and size. (d) is a hybrid configuration, which uses external (macroscopic)
Ioffe bars to produce the 2-dimensional quadrupole field, while deriving the on-
axis trapping fields from two loops and a bias field. Typical energy splittings
in the range of 1MHz are achievable using experimentally realistic parameters
(Drndić et al., 1998).

A.6. Arrays of traps

The various tools for guiding and trapping discussed above can be combined
to form arrays of magnetic microtraps on atom chips. Particularly suitable for
this purpose is the technique of the crossed wires which requires, however, a
multilayer fabrication of the wires on the surface. Arrays of traps and their
applications, especially in quantum information processing, are discussed in
Sect. VI.

A.7. Moving potentials

Introducing time-dependent potentials facilitates arbitrary movement of atoms
from one location to another. There are different proposals for possible
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Fig. 8. Magnetic ‘conveyor belt’: The wires are configured in a way that allows to transport atoms
from one trap to another along a side guide. Together with a homogeneous time-independent bias
field, the currents IQ , IH1, and IH2 are used for the confining fields of the source and collecting
traps, I0 is the current through the side guide wire. The currents IM1 and IM2 alternate sinusoidally
with a phase difference of p /2 and provide the moving potential. Courtesy J. Reichel.

implementations of such ‘motors’ or ‘conveyor belts’, one of which has already
been demonstrated experimentally by Hänsel et al. (2001b): Using solely
magnetic fields it is based on an approximation of the crossed-wire configuration.
Atoms trapped in a side guide potential are confined in the longitudinal direction
by two auxiliary meandering wires (Fig. 8). By running an alternating current
through both auxiliary wires with a relative phase difference of p /2, the potential
minimum moves along the guide from one side to the other in a controllable way.
In Sect. IV we present experimental results of the above scheme.

A.8. Beam splitters

By combining two of the guides described above, it is possible to design
potentials where at some point two different paths are available for the atom.
This can be realized using different configurations (examples are shown in Fig. 9)
some of which have already been demonstrated experimentally (see Sect. IV).

A.8.1. Y-beam splitters. A side guide potential can be split by forking an
incoming wire into two outgoing wires in a Y-shape (Fig. 9a). Similar potentials
have been used in photon and electron interferometers 5 (Buks et al., 1998).
A Y-shaped beam splitter has one input guide for the atoms, that is the central
wire of the Y, and two output guides corresponding to the right and left wires.
Depending on how the current Iw in the input wire is sent through the Y, atoms
can be directed to the output arms of the Y with any desired ratio. This simple
configuration has been investigated by Cassettari et al. (2000) (see Sects. III.A.3
and IV.C.3 for experimental realizations). Its disadvantages are: (1) In a single-
wire Y-beam splitter the two outgoing guides are tighter and closer to the surface
than the incoming guide. The changed trap frequency and the angle between

5 The Y-configuration has been studied in quantum electronics by Palm and Thylén (1992) and
Wesström (1999).
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Fig. 9. Different wire geometries for a beam splitting potential: The plots show the wire
arrangement on the surface of an atom chip, and the directions of current flow and the additional bias
field. Each picture also shows a typical equipotential surface to illustrate the shape of the resulting
potential. (a) A simple Y-beam splitter consisting of a single wire that is split into two: The output
side guides are tighter and closer to the surface than the input guide. Note that a second minimum
closer to the chip surface occurs in the region between the wire splitting and the actual split point
of the potential; (b) a two-wire guide split into two single-wire guides does not exhibit this ‘loss
channel’. (c) Here, the output guides have the same characteristics as the input guide, minimizing
the backscattered amplitude. The vertical orientation of the bias field ensures exact symmetry of
the two output guides. (d) In an X-shaped wire pattern the splitting occurs because of tunneling
between two side guides in the region of close approach of the two wires.

incoming and outgoing wires lead to a change of field strength at the guide
minimum and can cause backscattering from the splitting point. (2) In the Ioffe–
Pritchard configuration (i.e. with an added longitudinal bias field), the splitting
is not fully symmetric due to different angles of the outgoing guides relative to
the bias field. (3) A fourth guide leads from the splitting point to the wire plane,
i.e. to the surface of the chip.
The backscattering and the inaccessible fourth guide of the Y-beam splitter

may be overcome, at least partially, by using different beam splitter designs,
like those shown in Fig. 9b,c. The configuration in Fig. 9b has two wires which
run parallel up to a given point and then separate. If the bias field is chosen
so that the height of the incoming guide is equal to the half distance d/2 of
the wires (d/2 = dsplit as defined in Eq. 10 in Sect. II.A.3), the height of the
potential minimum above the chip surface is maintained throughout the device
(in the limit of a small opening angle) and no fourth port appears in the splitting
region. The remaining problem of the possible reflections from the potential in
the splitting region can be overcome by the design presented in Fig. 9c. Here, a
guide is realized with two parallel wires with currents in opposite directions and
a bias field perpendicular to the plane of the wires. This type of design creates a
truly symmetric beam splitter where input and output guides have fully identical
characteristics.
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A.8.2. X-beam splitters. A different possible beam splitter geometry relies
on the tunneling effect: Two separate wires are arranged to form an X, where
both wires are bent at the position of the crossing in such a way that they do not
touch (see Fig. 9d). An added horizontal bias field forms two side guides that are
separated by a barrier that can be adjusted to be low enough to raise the tunneling
probability considerably at the point of closest approach. If the half distance
between the wires becomes as small as dsplit (Eq. 10), the barrier vanishes
completely, resulting in a configuration that is equivalent to a combination of two
Y-beam splitters (Müller et al., 2000). The choice of the parameters in the wire
geometry, the wire current and the bias field governs the tunneling probability
and thereby the splitting ratio in this type of beam splitter. The relative phase shift
between the two split partial waves in a tunneling beam splitter allows to combine
two beam splitters to form a Mach–Zehnder interferometer. Another advantage
of the X-beam splitter is that the potential shape in the inputs and outputs stays
virtually the same all over the splitting region as opposed to the Y-beam splitter.
For a detailed analysis of the tunneling X-beam splitter see Andersson et al.
(1999).

A.8.3. Quantum behavior of X- and Y-beam splitters. For an ideal symmetric
Y-beam splitter, coherent splitting for all transverse modes should be achieved
due to the definite parity of the system (Cassettari et al., 2000). This was
confirmed with numerical 2-dimensional wave packet propagation for the lowest
35 modes. The 50/50 splitting independent of the transverse mode is an important
advantage over four-way beam splitter designs relying on tunneling such as the
X-beam splitter described above. For the X-beam splitter, the splitting ratios for
incoming wave packets are very different for different transverse modes, since
the tunneling probability depends strongly on the energy of the particle. Even
for a single mode, the splitting amplitudes, determined by the barrier width and
height, are extremely sensitive to experimental noise.

A.9. Interferometers

Following the above ideas of position-dependent multiple potentials and time-
dependent potentials which are able to split minima in two and recombine them,
several proposals for chip-based atom interferometers have been put forward
(Hinds et al., 2001; Hänsel et al., 2001c; Andersson et al., 2002).

A.9.1. Interferometers in the spatial domain. To build an interferometer for
guided atoms (Andersson et al., 2002) two Y-beam splitters can be joined back
to back (Fig. 10a). The first acts as splitter and the second as recombiner. The
eigenenergies of the lowest transverse modes along such an interferometer in
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Fig. 10. Basic properties of the guided matter wave interferometer: (a) Two Y-beam splitters are
joined together to form the interferometer. (b) Transverse eigenfunctions of the guiding potentials
in various places along the first beam splitter. When the two outgoing guides are separated far
enough, i.e. no tunnelling between left and right occurs, the symmetric and antisymmetric states
become degenerate. (c) Energy eigenvalues for the lowest transverse modes as they evolve along the
interferometer. One clearly sees that pairs of transverse eigenstates form disjunct interferometers.
(d) The wavefunction of a cold atom cloud starts out in the vibrational ground state of a guide or
trap. The wavefunction splits when the guide divides, leaving a part of the wavefunction in each
arm of the interferometer. If the phases of the two parts evolve identically on each side, then the
original ground state is recovered when the two parts of the wavefunction are recombined. But if a
phase difference of p accumulates between the two parts (for example due to different gravitational
fields acting on them), then recombination generates the first excited state of the guide with a node
in the center. Courtesy E. Hinds. (e) 2-dimensional plots of a wave packet propagating through a
guided matter wave interferometer for |0〉 and |1〉 incoming transverse modes, calculated by solving
the time-dependent Schrödinger equation in two spatial dimensions (x, z, t) for realistic guiding
potentials, where z is the longitudinal propagation axis. The probability density of the wave function
just before entering, right after exiting the interferometer, and after a rephasing time t are shown
for a phase shift of 32p . One clearly sees the separation of the two outgoing packets due to the
energy conservation in the guide, e.g. for n = 0 the first excited outgoing state is slower than the
ground state.
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2-dimensional geometry 6 are depicted in Fig. 10c. From the transverse mode
structure one can see that there are many disjunct interferometers in Fock space.
Each of them has two transverse input modes (|2n〉 and |2n + 1〉, n being the
energy quantum number of the harmonic oscillator) and two output modes. In
between the two Y-beam splitters, the waves propagate in a superposition of
|n〉l and |n〉r in the left and right arm, respectively. With adiabaticity fulfilled,
the disjunct interferometers are identical.
Considering any one of these interferometers, an incoming transverse state

evolves after the interferometer into a superposition of the same and the
neighboring transverse outgoing state (Fig. 10c), depending on the phase
difference acquired between |n〉l and |n〉r during the spatial separation of the
wave function 7. While the propagation remains unchanged if the emerging
transverse state is the same as the incoming state, a transverse excitation
or de-excitation translates into an altered longitudinal propagation velocity
(Dv � ±w/k where àk is the momentum of a wave packet moving through
the interferometer and w/2p is the transverse trapping frequency), since
transverse oscillation energy is transferred to longitudinal kinetic energy, and
vice versa.
As presented in Fig. 10e, integrating over the transverse coordinate results in a

longitudinal interference pattern observable as an atomic density modulation. As
all interferometers are identical, an incoherent sum over the interference patterns
of all interferometers does not smear out the visibility of the fringes.

A.9.2. Interferometers in the time domain. Two different proposals are based
on time-dependent potentials (Hinds et al., 2001; Hänsel et al., 2001c). These
proposals differ from the interferometer in the spatial domain in several ways:
(1) The adiabaticity of the process may be controlled to a better extent due to
easier variation of the splitting and recombination time. (2) The interferometers
are based on a population of only the ground state. (3) The interference signal
amounts to different transverse state populations in the recombined single
minimum trap, whereas the above proposal anticipates a spatial interference
pattern which may be easier to detect.
The first proposal (Hinds et al., 2001) is based on a two parallel wire

configuration with co-propagating currents (see Sect. II.A.3). Changing the bias
field in this configuration as a function of time produces cases (i), (ii), and (iii)
discussed in Sect. II.A.3 depending on the strength of the bias field as compared

6 In 2-dimensional confinement the out of plane transverse dimension is either subject to a much
stronger confinement or can be separated out. For experimental realization see Gauck et al. (1998),
Spreeuw et al. (2000), Hinds et al. (2001), Pfau (2001).
7 The relative phase shift D÷ between the two spatial arms of the interferometer can be introduced
by a path length difference or by adjusting the potentials to be slightly different in the two arms. In
general, D÷ is a function of the longitudinal momentum k .
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to the critical bias field Bc =
m0
p

(
Iw
d

)
. Starting with Bb < Bc and an atom cloud in

the ground state of the upper minimum, a coherent splitting of the corresponding
wave function is achieved when Bb is raised to be larger than Bc. As shown in
Fig. 10d, the symmetry of the wave function now depends on the relative phase
shift introduced between its two spatially separated parts. Thus, when the bias
field is lowered again to Bb = Bc, a superposition of the symmetric and the
antisymmetric state forms in the recombined guide.
If the spatial resolution of the detection system is not sufficient to distinguish

between the two output states, the following scheme is proposed: The node plane
of the excited state is rotated by 90◦ by turning an additional axial bias field while
the guides are combined. If after such an operation the bias field is lowered,
atoms in the ground state go to the upper guide whereas the population of the
excited state is found in the lower guide.
The second proposal (Hänsel et al., 2001c) utilizes the crossed-wire concept

introduced in Sect. II.A.4. Here, in contrast to the interferometer described above,
the splitting of the atomic wavefunction occurs in one dimension whereas the
confinement in the other two dimensions is the constant strong confinement of a
side guide. Longitudinally, the atoms are trapped by two currents running through
wires crossing the side guide wire. The resulting Ioffe–Pritchard potential well
is split into a double well and then recombined by a third crossing wire carrying
a time-dependent current flowing in the opposite direction.
Starting with a wavefunction in the ground state of the combined potential,

a relative phase shift introduced between the two parts of the potential after
splitting leads to a wavefunction in a (phase-shift dependent) superposition
of the ground and first excited states upon recombination. A state-selective
detection then displays a phase-shift dependent interference pattern. A detailed
analysis of realistic experimental parameters has shown that in this scheme
non-adiabatic excitations to higher levels can be sufficiently suppressed. The
position and size of the wavefunction are unchanged during the whole process.
Therefore, the interferometer is particularly well suited to test local potential
variations.

A.10. Permanent magnets

Although beyond the scope of this chapter, we mention configurations with
permanent magnets (Sidorov et al., 1996; Meschede et al., 1997; Saba et al.,
1999; Hinds and Hughes, 1999; Davis, 1999). Though less versatile in the sense
of not enabling the ramping up and down of fields, permanent magnets might
reward us with advantages such as less noise, strong fields, and large-scale
periodic structures. As described in Sect. V, technical noise in the currents which
induce the magnetic fields may have severe consequences in the form of heating
and decoherence. In the framework of extremely low decoherence, such as that
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Fig. 11. (a) Two pairs of differently sized magnetic sheets (bottom) are magnetized using
current-carrying wires wound around them. The choice of the direction of current flow in these
wires establishes the direction of magnetization: the arrows show a possible configuration for which
the equipotential lines are plotted (top). (b) The field produced by the sheet pairs measured in the
symmetry plane. (c) Scaling of the field due to the combined inner and outer pair of sheets in the
plane of symmetry. Courtesy M. Prentiss.

demanded by quantum computation proposals, permanent magnets might be a
better choice.
An interesting tool is a magnetic atom mirror formed by alternating magnetic

dipoles (Opat et al., 1992), creating an exponentially growing field strength as
the mirror is approached. This situation can be achieved by running alternating
currents in an array of many parallel wires or by writing alternating magnetic
domains into a magnetic medium such as a hard disk or a video tape. This has
been demonstrated by Saba et al. (1999) and may achieve a periodicity of the
order of 100 nm. Current-carrying structures have the disadvantage of large heat
dissipation, especially when the structure size is in the submicron region.
Another possibility is based on a combination of current-carrying wires and

magnetic materials; this was experimentally demonstrated at Harvard in the
group of M. Prentiss: Two pairs of ferromagnetic foils that were magnetized
by current-carrying wires wound around them were used for magnetic and
magnetooptic trapping (Vengalattore et al., 2001). The setup and the potential
achieved is illustrated in Fig. 11. The advantages of such a hybrid scheme
over a purely current-carrying structure are larger capturing volumes of the
traps, less heat dissipation, and enhanced trap depths and gradients because
the magnetic field of the wires is greatly amplified by the magnetic material.
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The magnets can still be switched by means of time-dependent currents through
the wires.

B. Electric Interaction

The interaction between a neutral atom and an electric field is determined by
the electric polarizability a of the atom. In general, a is a tensor. For the simple
atoms we consider, i.e. atoms with only one unpaired electron in an s-state, the
electric polarizability is a scalar and the interaction can be written as

Vpol(r) = − 12aE
2(r). (11)

B.1. Interaction between a neutral atom and a charged wire

We now consider the interaction of a neutral polarizable atom with a charged wire
(line charge q) inside a cylindrical ground plate (Hau et al., 1992; Schmiedmayer,
1995a; Denschlag and Schmiedmayer, 1997; Denschlag et al., 1998).
The interaction potential (in cylindrical coordinates) given by

Vpol(r) = −

(
1
4pû0

)2 2a q2
r2

(12)

is attractive. It has exactly the same radial form (1/r2) as the centrifugal potential
barrier (VL = L2z /2Mr

2) created by an angular momentum Lz. VL is repulsive. The
total Hamiltonian for the radial motion is

H =
p2r
2M

+
L2z

2M r2
−

(
1
4pû0

)2 2a q2
r2

(13)

=
p2r
2M

+
L2z − L

2
crit

2Mr2
, (14)

where Lcrit =
√
M a |q|/2pû0 is the critical angular momentum characteristic for

the strength of the electric interaction. There are no stable orbits for the atom
around the wire. Depending on whether Lz is greater or smaller than Lcrit, the
atom either falls into the center and hits the wire (|Lz| < Lcrit) or escapes from the
wire towards infinity (|Lz| > Lcrit). In the quantum regime, only partial waves
with àl < Lcrit (l is the quantum number of the angular momentum Lz) fall
towards the singularity and thus the absorption cross section of the wire should
be quantized (Fig. 12).
To build stable traps and guides one has to compensate the strongly attractive

singular potential of the charged wire. This can be done either by adding a
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Fig. 12. Theoretical absorption cross section for a charged wire. The calculations are made for
several different relative thicknesses (kRw) of the wire; the charge is given in units of the angular
momentum mcrit = Lcrit/à.

repulsive potential, for example from an atom mirror or an evanescent wave
(see Sect. II.C.1), or by oscillating electric fields (see Sect. II.B.2).

B.2. Stabilizing the motion with an oscillating electric charge:
the Kapitza wire

The motion in the attractive electric potential can be stabilized by oscillating
the charges. The mechanism is similar to the RF Paul trap (Paul, 1990) where
an oscillatory part of the electric fields creates a 3-dimensional confinement
for ions. An elementary theoretical discussion of the motion in a sinusoidally
varying potential shows that Newton’s equations of motion can then be integrated
approximately, yielding a solution that consists of a fast oscillatory component
superimposed on a slow motion that is governed by an effective potential (Landau
and Lifshitz, 1976).
An example of a 2-dimensional atom trap based on a charged wire with

oscillating charge was proposed by Hau et al. (1992). By sinusoidally varying the
charge on a wire, it is possible to add an effective repulsive 1/r6 potential which
stabilizes the motion of an atom around the wire. Sizeable electrical currents
appear when the charge of a real wire (with capacitance) is rapidly varied.
Magnetic fields are produced which interact with the magnetic moment of an
atom. This leads to additional potentials which have not been taken into account
in the original calculations.
Another AC-electrical trap with several charged wires was proposed by

Shimizu and Morinaga (1992). Their setup is reminiscent of a quadrupole mass
filter and consists of 4 to 6 charged electrodes that are grouped around the
trapping center.
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B.3. Guiding atoms with a charged optical fiber

Stable orbits for the motion of an atom around a line charge are obtained if the
atom is prevented from hitting the wire by a strong repulsive potential near the
surface of the wire. Such a strong repulsion can be obtained by the exponential
light shift potential of an evanescent wave that is blue-detuned from an atomic
resonance. This can be realized by replacing the wire with a charged optical
fiber with the cladding removed and the blue-detuned light propagating in the
fiber (Batelaan et al., 1994). The fiber itself has to be conducting or coated with
a thin (� l) conducting layer to allow uniform charging. For the simple case of
a TE01 mode propagating in the fiber, the light shift potential is independent of
the polar angle and the combined guiding potential is given by

Vguid(r) = AK
2
0 (Br) −

(
1
4pû0

)2 2aq2
r2

, (15)

where A and B are constants that depend on specifics of the optical fiber as
well as on light power, wavelength and atomic properties (Batelaan et al., 1994).
K0 is the modified Bessel function of the second kind. Figure 13 shows a typical
example of such a potential. Cold atoms are bound in radial direction by the
effective potential but free along the z-direction, the direction of the charged
optical fiber.
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Fig. 13. Typical radial potential for a neutral lithium atom trapped around a charged (5V) optical
quartz fiber (diameter 0.5mm) with 1-mW light and a detuning of D/G = 3×105. The attractive
potential (1/r2) is created by the interaction of the induced dipole moment with the electric field of
the charged fiber. The repulsion is due to the evanescent wave from blue-detuned light propagating
in the fiber. Close to the wire surface the Van der Waals interaction becomes important.
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C. Traps and Guides formed by Combining the Interactions

C.1. Charged wire on a mirror

As we have seen above, a static charged wire alone cannot form the basis for
stable trapping. Cylindrical solutions such as the charged light fiber have the
disadvantage that they cannot be mounted on a surface. An alternative solution
would be to mount a charged wire onto the surface of an atom mirror. The
combination of the attractive 1/r2 potential with the repulsive potential of the
atom mirror 8 Vm(z) gives:

Vguid(r) = Vm(z) −

(
1
4pû0

)2 2a q2
r2

, (16)

where z is the height above the mirror and r the distance from the wire. This
creates a potential tube for the atoms as shown in Fig. 14 which can be viewed
as a wave guide for neutral atoms.
Typical parameters for guides formed by a magnetic mirror and a charged wire

are given by Schmiedmayer (1998). They can be very similar to the magnetic
guides discussed in Sect. II.A. Using typical mirror parameters (Roach et al.,
1995; Sidorov et al., 1996), one can easily achieve deep and narrow guides with
transverse level spacings in the kHz range for both light (Li) and heavy (Rb)
atoms.
In a similar fashion microscopic traps can be created by mounting a charged

tip (point) at or close beneath the atom mirror surface. A point charge on the
surface of an atom mirror creates an attractive 1/r4 interaction potential:

Vpol(r) = −

(
1
8pû0

)
2aq2

r4
. (17)

where q is the tip charge. Together with the atomic mirror it forms a microscopic
cell for the atoms. It can be viewed as the atom-optical analog to a quantum dot
(Schmiedmayer, 1998; Sekatskii et al., 2001).
This approach of combining a charged structure with an atom mirror is

compatible with well-developed nanofabrication techniques. This opens up

8 There are two main types of atom mirrors: The first type utilizes evanescent waves (e.g. above
the surface of a reflecting prism) of blue-detuned light which repels the atoms. Here the potential
takes the form Vm(z) = V0 exp(−úmz) where úm is of the order of the light wave number and z is
the distance from the mirror (Cook and Hill, 1982). The second type is based on a surface with
alternating magnetic fields. Here, l = 2p /úm is the periodicity of the alternating magnetic field.
The approaching atom experiences an exponentially increasing field, and consequently the weak-
field seekers are repelled (Opat et al., 1992; Roach et al., 1995; Sidorov et al., 1996; Hinds and
Hughes, 1999).
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Fig. 14. Typical potential for a neutral atom guide. The attractive potential (1/r2) is created by the
interaction of the induced dipole moment in the electric field of the charged wire mounted directly
on the surface of an atomic mirror. The action of the atomic mirror (evanescent wave or magnetic
mirror) prevents the atom from reaching the surface and creates a potential tube close to the surface
illustrated by the contour graph. The two adjacent plots give the potential in a direction orthogonal
to the charged wire and orthogonal to the mirror surface. Distances are given from the location of
the charged wire and the surface of the atom mirror.

a wide variety of possibilities ranging from curved and split guides to
interferometers or even complex networks.

C.2. Combined electric–magnetic state-dependent traps

The magnetic guides and traps (Sect. II.A) can be modified by combining
them with the electric interaction, thereby creating tailored potentials depending
on internal (e.g. spin) states. For example, supplementary electrodes located
between independent magnetic traps can be used to lower the magnetic barrier
between them by the attractive electric potential the electrodes create. Since
the magnetic barrier height depends on the magnetic substate of the atom,
whereas the electric potential does not, this allows state-selective operation. This
is especially interesting since it can lead to implementing quantum information
processing with neutral atoms in microscopic trapping potentials where the
logical states are identified with atomic internal levels (see Sect. VI).
A simple example, showing such a controllable state dependence, is a

magnetic wire guide approached by a set of electrodes (Fig. 15a). Applying a
high voltage to the electrodes introduces an electrostatic potential which provides
confinement along the direction parallel to the magnetic side guide, and also
shifts the trapping minimum towards the surface, possibly breaking the magnetic



288 R. Folman et al. [II

Fig. 15. State-dependent potential: (a) top view of an actual chip design; the wire in the center
is used as a side guide wire, the additional electrodes create a spatially oscillating electric field
providing confinement also along the wire. The contour plot shows a typical potential configuration
for 7Li atoms in the |F = 2, mF = 2〉 magnetic substate using experimentally accessible parameters.
Dark areas correspond to attractive potentials, the trap minima are located 50mm above the surface.
(b,c) The side views show that only one state (|F = 2, mF = 2〉) is trapped in the combined
potential (b), while the other (|F = 1, mF = −1〉) is not, because the weaker magnetic barrier to the
surface is compensated by the attractive electric potential (c). The parameters used in a simulation
with the electromagnetic field solver MAFIA were Iw = 500mA, Bb = 20G for the side guide and
a voltage of 600V on the electrodes.

potential barrier in the direction perpendicular to the surface itself. The charge
can be adjusted in such a way that depending on the strength of the magnetic
barrier created by the wire current, the atoms either impact onto the surface
or are trapped above it. Since the strength of the magnetic barrier depends on
the magnetic substate of the atom or, more precisely, depends linearly on the
quantum number mF , this can be exploited to form a state-selective magnetic
trap (Fig. 15b,c).

C.3. The electric motor

In general, electric fields are always present in magnetic wire traps since an
electric potential difference is needed to drive a current through a wire with finite
resistance. For large wires, the voltages in question are low and if the distances
of the atoms from the wire are large enough, the attractive electric interaction
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Fig. 16. Two-wire guide configuration with currents of 1A running in opposite directions with a
vertical bias field of 150G. The combined magnetic and electric potential is shown in contour plots
perpendicular to the wire and along the wire at the minimum height (inset). The parabolic potential
shape offers the possibility to drive the atoms (87Rb) along the wire. In the example, the voltages
applied to the wires are chosen to be 0V with respect to ground in the wire center.

can be neglected. However, for micron-sized wires, one finds that if the current-
carrying wire becomes long, at some point the voltage is strong enough to create
a significant driving force for the atoms or even to destroy the traps.
On the other hand, one can actually exploit this effect and turn it into an

‘electric motor’ by using the electric potential gradient inside the magnetic
minimum to accelerate and decelerate the atoms at will. Figure 16 illustrates
the mechanism used for the motor for the example of a two-wire guide with a
vertical bias field. The wires carry counter-propagating currents, and the electric
interaction is zero in the middle of the guide (see inset) where both wires have
the same voltage. By adding a homogeneous electric potential relative to ground,
the zero electric field point may be moved at will to achieve any acceleration or
deceleration rate. A constant acceleration is obtained when the zero electric field
point is maintained at a constant distance from the position of the atoms.

D. Miniaturization and Technological Considerations

To achieve very robust and highly controlled atom manipulation one would like
to localize atoms in steep traps or guides which can be fabricated with high
precision. The large technological advances in precise nanofabrication, with the
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achievable size limit on chips smaller than 100 nm, makes the adaptation of these
processes for mounting the wires onto surfaces very attractive.

D.1. Miniaturization

The main motivations behind miniaturization and surface fabrication are:
• Large trap level spacings help to suppress heating rates. To achieve the
necessary large trapping gradients and curvatures with reasonable power
consumption, miniaturization is unavoidable (see Sect. II.D.4).

• The tailoring resolution of the potentials used for atom manipulation is
given by the resolution of the fabrication of the structures used. It is,
for example, important for the realization of atom–atom entanglement by
controlled collisions as suggested by Calarco et al. (2000) (see Sect. VI)
to reduce the distances between individual trapping sites to the micron
regime or below. This would be virtually impossible with (large) free-standing
structures.

• Nanofabrication is a mature field which allows one to place wires on a surface
with great accuracy (<100 nm). Surface-mounted structures are very robust
and the substrate serves as a heat sink allowing larger current densities (see
Sect. II.D.4). In addition, nanofabrication allows parallelism in production of
manipulating elements (scalability).

• Nanofabrication also allows us to contemplate the integration of other
techniques on the chip (see Sect. VI for details).

D.2. Finite size effects

The formulae presented in Sects. II.A to II.C are exact only for infinitely small
wire cross sections. In the case of a physical wire with a finite cross section,
they are a good approximation only as long as the height above the wire is
greater than the width of the wire. For experiments requiring a trap height smaller
than the width of the wire, finite size effects have to be taken into account. In
Fig. 17, we present examples of calculations showing how the trap gradient is
limited by finite size wires. One clearly sees that at trap heights of the order of
the width of the wire the resulting gradient starts to deviate from the expected
value. The effect is small for wires with a square cross section, while it becomes
considerably more important when rectangular wires with high ratios of width
to thickness are used.

D.3. Van der Waals interaction

The Van der Waals interaction becomes important at distances of the order
of a few 100 nm from the surface. The interaction can be strong enough to
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Fig. 17. Deviations from the field of an infinitely thin wire become important as the surface of
a physical wire is approached. The plot shows the trap gradient for a side guide (see Sect. II.A.2)
when differently shaped wires are used. The solid line corresponds to a circular cross section as a
reference since the field outside the wire equals that of an infinitely thin wire at the wire center.
A wire with a square cross section (dotted line) shows very small deviations, while broad and thin
wires (dashed lines) deviate more and more as the thickness/width ratio decreases. Here, all wires
are chosen to have the same cross section d2. Therefore, the widths of the rectangular wires are
2d and

√
10d = 3.2d for the ratios 1 : 4 and 1 : 10, respectively.

significantly alter the trapping potentials (Grimm et al., 2000). Traps much
closer than 100 nm from the surface will be very hard to achieve since the Van
der Waals potential attracts the atoms to the surface and increases with 1/d3

(in the non-retarded regime where the distance d is smaller than the optical
wavelength).

D.4. Current densities

A limiting factor in creating steep traps and guides is the maximally tolerable
current density of a current-carrying structure. Considering a side guide potential
created by a wire with finite width d and a constant thickness, the highest
possible gradient is achieved at a distance from the wire comparable with d. The
bias field needed for such a trap is given by the ratio of the maximum current
that can be pushed through the wire and d; therefore the bias field is proportional
to the maximum current density j. This leads to the conclusion that the highest
possible gradient is given by j/d which favors smaller wires. If a square wire
cross section d2 is assumed, the maximum gradient is proportional to j. Even in
this case, smaller d will allow for larger gradients because j has been observed to
increase with smaller wire cross sections. The drive for smaller width is stopped



292 R. Folman et al. [III

at a distance of about 100 nm where surface decoherence effects (see Sect. V)
and Van der Waals forces may be too strong to endure.

D.5. Multi-layer chips

Last, one should also note that as more complex operations are demanded from
the atom chip (see Sect. VI), it will have to move on from a 2-dimensional
structure into a 3-dimensional structure in which not only current- and charge-
carrying wires are embedded, but also light elements and wave guides. These
highly complex devices will force upon the fabrication a whole range of material
and geometrical constraints.

III. Experiments with Free-Standing Structures

The basic principles of microscopic atom optics have been demonstrated using
free-standing structures: current-carrying and charged wires. The interaction
potentials are in general shallow, typically only a few mK deep. Hence
experiments use cold atoms from a MOT or a well collimated atom beam
(even the moderate collimation of 1mm over 1m results in a typical transverse
temperature of <1mK).
Free-standing wire structures can be installed close to a standard six beam

MOT without significantly disturbing its operation (as long as the wire is thin
enough), and offer large optical access which has advantages when probing the
dynamics of the atoms and their spatial distribution within the wire potentials.
They have the disadvantages that they are not very sturdy, they deform easily
due to external forces, and they cannot be cooled efficiently to dissipate energy
from ohmic heating. This limits the achievable confinement and the potential
complexity of wire networks. Nevertheless there are some special potentials
which can only be realized with free-standing wires.

A. Magnetic Interaction

As discussed in Sect. II.A there are two possibilities for magnetically trapping a
particle with a magnetic moment: traps for strong field seekers and traps for
weak field seekers. In the following we describe experiments with magnetic
microtraps which are based on small, free-standing wires or other magnetic
structures. Typical wire sizes range from 10mm to a few mm and the wires
carry electrical currents of up to 20A. All experiments but the first example
start with a conventional MOT of alkali atoms (lithium or rubidium) which is
initially situated a few mm away from the magnetic field producing structures.
This distance prevents the atoms in the MOT from coming into contact with the
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structure surface where they would be adsorbed. It also provides the necessary
optical access for the MOT laser beams.
To load the magnetic wire traps and guides, the MOT laser light is simply

switched off and the magnetic trap fields are turned on. The loading rate into the
miniature magnetic traps has been enhanced in some experiments (a) by optically
pumping the unpolarized MOT atoms to the right trapping state (Key et al.,
2000); (b) by first loading the MOT atoms in a size-matched magnetic trap which
is then further adiabatically compressed (Vuletic et al., 1996, 1998; Key et al.,
2000; Fortagh et al., 1998; Haase et al., 2001); (c) by moving the MOT closer
to the trapping region shortly before the light is turned off, which can be done
with an additional magnetic bias field (Denschlag et al., 1999b). In this way the
efficiency of transferring the atoms into the miniature magnetic traps reached
between 1 and 40 %. In general the spatial distribution of the trapped atoms was
imaged with a CCD camera by shining a resonant laser beam onto the atoms and
detecting its absorption or the atomic fluorescence.

A.1. Magnetic strong-field-seeking traps: the Kepler guide

A magnetic strong-field-seeker trap for cold neutral atoms was demonstrated
in two experiments: in 1991 by guiding an effusive beam of thermal sodium
atoms (mean velocity ~600m/s) along a 1-m long current-carrying wire
(Schmiedmayer, 1992, 1995a,b) and in 1998 with cold lithium atoms loaded from
a MOT (Denschlag et al., 1999b).
The setup of the beam experiment is given in Fig. 18. The atom beam is

emitted from a 1-mm diameter nozzle in a 100◦C oven and is collimated to
1mrad. Introducing a small bend in the wire (~1mrad), one can guide some of
the atoms along the wire around the beam stop. The atomic flux was measured
with a hot wire detector. The guiding wire was 150mm thick and carried 2A of
electrical current.
In the second experiment, lithium atoms were cooled in a MOT (1.6mm

diameter FWHM) to about 200mK (which corresponds to a velocity of about
0.5 m/s). By shifting the MOT onto a 50mm thick wire and releasing the atoms
from the MOT, about 10% of the unpolarized atomic gas could be trapped
magnetically in orbits of about 1mm diameter around the wire that carried about
1A of current. Monte Carlo calculations indicate that by optically pumping the
atoms and optimizing the trap size and current through the wire, it should be
possible to guide over 40% of the atoms from a thermal cloud with the Kepler
guide. The loading efficiency is limited to this amount, because atoms in highly
eccentric orbits hit the wire and are lost.
The bound atoms are guided along the wire corresponding to their initial

velocity component in this direction. Consequently, a cylindrical atomic cloud
forms that expands along the wire. After 40ms of guiding, the atoms typically
had propagated over a 2cm distance along the wire (see left-hand panel of
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Fig. 18. (a) Experimental setup: The schematics at the bottom show in detail the relative geometric
arrangement between the apertures, the movable beam shutter used to bend the wire, and how the
wire is mounted. (b) Guiding of Na atoms along the 1-m long, 150-mm diameter tungsten wire
(at detector position 0 indicated by the vertical line). Experimental count rates, n(I ) − n(0) (left),
and Monte Carlo simulations (right), are shown for 0.0, 0.50 and 1.00mrad bends in the wire.
The different symbols represent currents of 0.5A (circles), 1.0A (diamonds), 1.5A (crosses) and
2.0A (triangles) through the wire. The thick line shows the fraction of atoms of the direct beam
that gets to the detector when no current is on (right-hand vertical axis). Its form corresponds to
the shadow of the bender that is cast onto the detector.

Fig. 19). For long guiding times the bound atoms leave the field of view, and the
fluorescence signal of the atoms decreases. The top left view images of Fig. 19
show a round atom cloud that is centered on the wire suggesting that atoms circle
around it.
By studying the ballistic expansion of the bound atoms after switching off

the guiding potentials, the momentum distribution of the guided atoms can be
extracted. The center panel of Fig. 19 shows a picture sequence demonstrating
how the atomic cloud expands as a function of time. Starting from a well-
localized cylindrical cloud of guided atoms at t = 0 the spatial atomic distribution
transforms into a doughnut-like shape. This shows that there are no zero-velocity
atoms in the Kepler guide. In order to be trapped in stable orbits around the wire
the atoms need sufficient angular momentum and therefore velocity. Atoms with
too little angular momentum hit the wire and are lost.
Guiding in the Kepler guide is very sensitive to the presence of uncompensated

bias fields. Such additional magnetic bias fields, even if homogeneous, destroy
the rotational symmetry of the Kepler potential and angular momentum is
not conserved anymore. Over the course of time, the Kepler orbits become
increasingly eccentric and thus finally hit the current-carrying wire leading to
loss, which was confirmed by Monte Carlo calculations. The right-hand panel
of Fig. 19 shows the results of an experiment investigating the dependence of the
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Fig. 19. Left: guiding of atoms along a current-carrying wire in their strong field seeking state
(Kepler guide). Pictures of the atomic clouds are shown, taken in axial and transverse directions with
respect to the wire. For times shorter than 15ms the expanding cloud of untrapped atoms is also
visible. The location of the wire is indicated by a line (dot). The pictures show a 2-cm long section
of the wire that is illuminated by the laser beams. Center: Atomic distribution after free expansion
of 0 to 9ms for atoms that have been guided in Kepler orbits around the wire. The expanded cloud
is doughnut-shaped due to the orbital motion of the atoms around the wire. Right: Experimentally
measured stability of the Kepler guide as a function of the magnitude of bias fields. The signal is
proportional to the number of atoms trapped in the guide after an interaction time of 20ms.

magnetic trap stability on the magnetic bias field. The remaining atom number in
the Kepler guide was measured after 20ms interaction time. It clearly decreases
with increasing bias field strength: the larger the bias field, the faster the atoms
get lost (Denschlag, 1998). In case of a weak disturbance the orbits can be
stabilized by an additional 1/r2 potential which leads to a precession of the
orbits.

A.2. Magnetic weak-field-seeking traps and guides

The development of miniature weak-field-seeker traps, as discussed in Sects.
II.A.2 and II.A.3, lays the foundations of miniaturized atom optics on chips. Here
and in the following sections we restrict our discussion explicitly to experiments
with free-standing structures. Surface-mounted guides and traps are discussed in
Sect. IV.
In the following experiments the circular symmetric magnetic field of a

straight current-carrying wire is combined with a magnetic bias field as described
in Sect. II.A.2. The two fields cancel each other along a line that is parallel to the
wire creating a magnetic field minimum (side guide). In the simplest case, the
bias field can be created by an additional wire (Fig. 20a) (Fortagh et al., 1998) or
by an homogeneous external field (Fig. 20b) (Denschlag, 1998; Denschlag et al.,
1999b). Four wires also create a 2-dimensional quadrupole field (Fig. 20c) (Key
et al., 2000).
The experiments of the group of C. Zimmermann (Fortagh et al., 1998) used

additional endcap (‘pinch’) coils (see Fig. 20a) to confine the atoms also in
the direction along the wire. They succeeded in adiabatically transferring and
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Fig. 20. Three realizations of magnetic quadrupole traps with straight wires. (a) Trap realized
by Fortagh et al. (1998) with a thin wire (50mm) glued onto a thick wire (1mm). The current
through both wires flows in opposite directions. (b) A homogeneous bias field is combined with
a single straight wire (Denschlag, 1998; Denschlag et al., 1999b). (c) Four wires with alternating
current direction produce a quadrupole field minimum in the center. In the experiment the four wires
were embedded in a silica fiber (Key et al., 2000). (d) Images of atoms in guide (b).

compressing the magnetic trap – reaching a relatively high transfer efficiency
of 14% from the MOT into a microtrap without losing phase space density. In
experiments in Innsbruck (Denschlag, 1998; Denschlag et al., 1999b) and Sussex
(Key et al., 2000) (Figs. 20b and c, respectively) cold atoms released from a MOT
were guided along the wires at a distance of one to two centimeters (Fig. 20d). In
addition, the vertical Sussex experiment used one bottom pinch coil to confine
the falling atoms from exiting the guide. The atoms bounced back and were
imaged at the top exit.
By choosing appropriate bias field strengths and wire currents, a wide range

of traps with different gradients have been realized, and the scaling properties
(see Sect. II.A.4) were studied. With a fixed trap depth (given by the magnitude
of the bias field Bb) the trap size and its distance from the wire can be controlled
by the current in the wire. The trap gets smaller and steeper (gradient ∝ B2b/I )
for decreasing the current in the wire, which was confirmed experimentally
(Denschlag, 1998; Denschlag et al., 1999b). For example, a trap with a gradient
of 1000G/cm can be achieved with a moderate current of 0.5A and an offset
field of 10G. The trap is then be located 100mm away from the wire center.
A different weak-field-seeker trap has been experimentally realized by placing

a current-carrying wire right through the minimum of a magnetic quadrupole
field (Denschlag, 1998; Denschlag et al., 1999a). If the wire is aligned along the
direction of the symmetry axis of the quadrupole field, a ring-shaped potential
is obtained with a non-vanishing minimum field strength (see Sect. II.A.4 and
Fig. 5a).
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A.3. Beam splitters

Although free-standing wire experiments are certainly limited in their architec-
tural complexity because of mechanical stability, some variations of the straight
wire geometry have been explored. By combining two free-standing wires one
can form a “Y” or fork, which can be used as an atomic beam splitter (see
Fig. 21) (Cassettari et al., 1998; Denschlag et al., 1999a). Choosing an arm of
the fork through which an electrical current is conducted, the atomic flow can
be switched from one arm to the other. If current is sent through both arms, the
atom beam is split in two.

Fig. 21. Atomic beam switch for guided atoms using a “Y”-shaped current-carrying wire. By
controlling the current through the arms, one can send cold lithium atoms along either arm or split
the beam in two. The images here show the switch operated in the Kepler guide mode and the
“weak-field-seeker” mode.

A.4. Free-standing bent wire traps

Experiments with free-standing wires that are bent in shape of a “U” or “Z” have
been reported by Denschlag et al. (1999a), Haase (2000) and Haase et al. (2001).
Bending the wire has the effect of putting potential endcaps on the wire guide,
which turns it into a 3-dimensional weak-field-seeker trap (see Sect. II.A.4.2).
A simple Z-wire trap achieves trapping parameters similar to the ones currently
used in BEC production, here, however, with moderate currents and very low
power consumption (see Sect. IV.C.4). In their experiment, Haase et al. used
a 1-mm thick copper wire, with the central bar being about 6mm long. The
wire can carry 25A without any sign of heating. Figure 22c shows the scaling
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Fig. 22. (a) Schematic description of the experiment. Camera 1 is looking along the central bar
of the magnetic trap and camera 2 along the leads. In addition to the two laser beams shown in the
figure, there is the third MOT beam parallel to the central bar. (b) The Z-wire held by two Macor
blocks is mounted on a flange. (c) The cloud of trapped atoms monitored by camera 1. By changing
the bias field Bb from 5 to 52G, the trap size and position change. Also, the trap frequency increases
from 30 to 1600Hz. The experiment confirms the predicted scaling laws concerning trap distance,
frequency and bias field.

properties of the Z-trap. The atomic cloud can be compressed by raising the bias
field or by lowering the wire current.

A.5. The tip trap

Vuletic et al. (1996, 1998) have demonstrated a miniature magnetic quadrupole
trap (the tip trap) by mounting small coils on a combination of permanent
magnets and ferromagnetic pole pieces (see Fig. 23). In this way they exploited
the fact that for a given magnetic field Bo the maximum possible field gradient
scales like Bo/R where R is the geometric size of the smallest relevant element.
The central element of the tip trap is a 0.65mm steel pin of which one
tip is sharpened to a radius of curvature of 10mm. Thus with R = 10mm
and Bo = 1000G the magnetic field gradient exceeded 105 G/cm. Working
with lithium atoms, this gradient implies a ground-state size of the atomic
wavefunction smaller than the wavelength of the optical transition at 671 nm.
The microtrap is loaded by adiabatic transport and compression: The atoms of
the lithium MOT are transferred to a volume-matched, but still relatively shallow
magnetic potential after turning off the MOT light. By adiabatically changing the
currents through the miniature coils the magnetic trap compresses its size by a



III] MICROSCOPIC ATOM OPTICS: FROM WIRES TO ATOM CHIP 299

Fig. 23. Left: Setup of the tip trap of Vuletic et al.. A sharp steel pin is magnetized by a permanent
magnet and exposed to a variable magnetic field that is generated by two electromagnets. Right:
Observed shape of the atomic cloud (a) in the shallow field after loading from a magneto-optical
trap and (b) after compression in the steep potential of the tip trap at a current in the tip coil of
1.2A. Courtesy V. Vuletic.

factor of 6.5 within 100ms. A total of 3% of the MOT atoms could be transferred
to the microtrap at moderate currents of 3A through the tip trap coils.

A.6. Scattering experiments with a current-carrying wire

In 1995 the Melbourne group (Rowlands et al., 1995, 1996a,b) performed an
experiment where a beam of laser cooled cesium atoms, after being released
from a MOT, is scattered off a current-carrying wire. As the atoms pass through
the static inhomogeneous magnetic field of the wire they are deflected by a
force ∇(mB) dependent on the magnetic substate of the atom (see Fig. 24).

Fig. 24. Computer simulation of trajectories of cesium atoms deflected by the magnetic field from
a wire carrying 20A. The solid lines indicate the trajectories for atoms in the nine possible magnetic
substates, assuming zero initial velocity. The broken lines are for atoms in the mF = ±F substates
with initial transverse velocities of ±1 cm/s. Courtesy P. Hannaford.



300 R. Folman et al. [III

With currents of up to 45A through the wire, the positions of the atoms in the
individual magnetic substates are resolved and deflection angles as large as 25◦

are observed. State preparation of the atoms using optical pumping increases the
number of atoms deflected through essentially the same angle.

A.7. A storage ring for neutral atoms

Very recently Sauer et al. (2001) have demonstrated a storage ring for neutral
atoms using a two-wire guide (Sect. II.A.3). A pair of wires (separation ~840mm)
which forms a ring of 2 cm diameter, produces a 2-dimensional quadrupole
magnetic field (see Fig. 25). The wires carry currents of 8A in the same direction
which produces a field minimum between the two wires with a field gradient
of 1800G/cm and a trap depth of 2.5mK for the F = 1,mF = −1 ground
state of 87Rb (weak-field seeker). The ring is loaded from a MOT via a similar
second two-wire waveguide. The MOT is turned off and the second waveguide is
ramped up in 5ms. Approximately 106 laser-cooled rubidium atoms (longitudinal
temperature 3mK) fall 4 cm under gravity along the guide after which they enter
the storage ring with a velocity of about 1m/s. To transfer the atoms to the ring,
the current in the guide is ramped off while simultaneously increasing the current
in the ring. Using fluorescence imaging the position and the number of the atom
cloud can be probed. Up to seven revolutions of the atoms in the ring have been
observed.

Fig. 25. (a) Schematic of the storage ring. (b) Cross section of the overlap region. The trap
minimum is shifted from between the guide wires to the ring wires by adjusting the current.
(c) Contour plot of a two-wire potential. The contours are drawn every 0.5mK for the wire distance
d = 0.84mm and I = 8A. (d) Successive revolutions in the storage ring. The points represent
experimental data, the curve is a theoretical model. Courtesy M. Chapman.

B. Charged Wire Experiments

Two types of experiments have used the 1/r2 potential (Eq. 12) of a charged
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wire. One investigated the effect of a charged wire in atom interferometry. The
other investigated atomic motion in the singularity of the 1/r2 potential. Here,
laser cooled atoms fall into the attractive singularity and are lost as they hit the
charged wire.

B.1. A charged wire and interferometry

Shimizu et al. (1992) used a straight charged wire to shift (deflect) the
interference patterns of a matter wave interferometer in a Young’s double slit
configuration. In a recent experiment of the same group (Fujita et al., 2000)
(Fig. 26, at right), this work is expanded by combining a binary matter wave

Fig. 26. Experimental set-ups and data for interferometry and holography experiments with
charged wires. Left: charged-wire interferometer for metastable helium. Different voltages applied to
the electrodes: the data sets are plotted with a vertical offset. The dotted horizontal lines indicate the
zero level for the respective measurements. Courtesy J. Mlynek. Right: Selective atom holography:
switching between atomic images “÷” and “p”. For the upper figure the wire array is uncharged,
whereas for the lower figure it is electrically charged. The squares in the lower part of each figure
are nondiffracted atom patterns. Courtesy F. Shimizu.

hologram with an array of straight charged wires. By changing the electric
potential applied to the electrodes on the hologram the holographic image
patterns can be shifted or erased, and it is even possible to switch between
two arbitrary holographic image patterns 9. These experiments were performed
using laser-cooled metastable neon in the 1s3 state. After releasing them from
the MOT, the atoms fell under gravity onto a double slit or a binary hologram.
A few centimeters further down the atoms formed an interference pattern which
was detected by a multi-channel plate (MCP).
The binary hologram pattern held an array of 513 regularly spaced parallel wires
of platinum on its surface. Each electrode was either grounded or connected to

9 Similarly it was suggested by Ekstrom et al. (1992) that charged patches on a grating can be used
to modify the diffraction properties.
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a)

Fig. 27. (a) Two classical trajectories: An atom falls into the 1/r2 singularity of an electrically
charged wire if the atomic angular momentum Lz < Lcrit. If Lz > Lcrit it scatters and escapes from
the singularity. (b) When moved onto the wire the atom trap decays exponentially, as can be seen
by monitoring the atomic fluorescence signal. Charging the wire (100V↔ 6.4 pC/cm) creates an
attractive 1/r2 potential and enhances the decay rate. Inset: experimental steps. Loading of the trap,
shifting it onto the wire and observing its decay. (c) Dependence of the trap decay rates on the wire
charge for different wire thicknesses. The decay rate for uncharged wires is proportional to their
actual diameters. For increasing charges the absorption rate becomes a linear function of the charge,
a characteristic of the 1/r2 singularity. The slope is independent of the wire diameter.

a terminal. The width and the spacing of each wire was 0.5mm and the holes for
the binary hologram in between the wires were 0.5mm × 0.5mm in size. The
electric field E generated between two wires shifted the energy of the neon atom
by −aE2/2. When two adjacent electrodes had the same potential, the atoms in
the gap were unaffected. If they had different potentials, the atoms accumulated
an additional phase while passing through the hole.
In an experiment in Konstanz, Nowak et al. (1998) sent a collimated thermal

beam of metastable helium atoms onto a charged wire (tungsten, 4 mm diameter)
where it was diffracted (see Fig. 26, left). 1.3m further downstream they
observed an interferometric fringe pattern which depended on the wire charge
and on the de Broglie wavelength. The data agreed well with the theoretical
predictions for scattering polarizable particles off a 1/r2 potential.

B.2. A charged wire in gas of cold atoms: studying a singular potential

The motion in a 1/r2 singularity can be studied by placing a cloud of cold atoms
in the potential of a charged wire. In this experiment the number of cold lithium
atoms of a MOT is monitored while the atoms move in the 1/r2 potential of the
wire (Denschlag et al., 1998). At extremely low light levels the MOT acts as a
box holding a gas of atoms. Atoms falling into the attractive 1/r2 singularity are
lost as they hit the wire. This loss mechanism leads to an exponential decay of
the trapped atom number (see Fig. 27b).
The corresponding loss rate is characteristic for the 1/r2 singularity and its
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strength. Atoms with angular momentum Lz < Lcrit (see Eq. (14) in Sect. II.B)
fall into the singularity. The loss rate is a linear function of q because Lcrit is
proportional to the line charge q and the atoms are uniformly distributed over
angular momentum states (see Fig. 27c). This is actually true only for high
charges, since for lower q, the finite thickness of the charged wire becomes
apparent. The MOT decay rate for an uncharged wire is proportional to its actual
diameter. The radii of the wires in the experiments ranged between 0.7mm and
5mm. A detailed analysis of the absorption data reveals that Van der Waals forces
also contribute to the atomic absorption rate (Denschlag, 1998). This effect was
found to be important for thin wires with diameters of less than 1mm. Hence
this system should allow for detailed future studies of Van der Waals interaction
and retardation in nontrivial boundary conditions.
The 1/r2 potential would be especially interesting to study in the quantum

regime where the de Broglie wavelength of the atoms is much larger than the di-
ameter of the charged wire; the quantization of angular momentum then begins to
play a role (Denschlag and Schmiedmayer, 1997). This can be used for example
in order to build an angular momentum filter for atoms (Schmiedmayer, 1995a).

IV. Surface-Mounted Structures: The Atom Chip

Free-standing structures, as those described in the previous section, are extremely
delicate, and one arrives quickly at their structural limit, when miniaturizing
traps and guides. Wires mounted on a surface are more robust, can be made
much smaller, and heat is dissipated more easily which allows significantly
more current density to be sent through the wires. This together with strong
bias fields allows for tighter confinement of atoms in the traps. Consequently,
ground-state sizes <10 nm become feasible. Existing accurate nanofabrication
technology provides rich and well established production procedures, not only
for conducting structures, but also for micromagnets. Optical elements such as
micro-optics, photonic crystals and microcavities can also be included to arrive
at a highly integrated device. The small ground-state size of such microtraps
implies that we know the exact location of the atom relative to other structures
on the surface to the precision of the fabrication process (typically <100 nm),
allowing extremely close sites to be addressed individually for manipulation and
measurement.
We have named nanofabricated surfaces for cold atom manipulation ‘atom

chips’ in reminder of the similarity of these atom-optical circuits to electronic
integrated circuits (Folman et al., 2000). In designing atom chips one attempts to
bring together the best of two worlds: the well-developed techniques of quantum
manipulation of atoms, and the mature world of nanofabrication in electronics
and optics, to build complex experiments utilizing the above techniques.
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In the following we describe the atom chip and its present experimental status.
Future goals will be addressed in Sect. VI.

A. Fabrication

There are many different techniques of atom manipulation which can be
integrated into an atom chip. Present atom chip experiments follow a simple
scheme based on wires that carry currents or charges. These allow to miniaturize
the free-standing devices discussed in Sect. III. We will focus here on these
simple integrated structures, leaving issues of further integration to the outlook
in Sect. VI.
To build an atom chip one has to solve the following problems: first of all, the

microstructures have to withstand high current densities and high electric fields.
This requires structures with low electric resistance. The material of choice for
the wires is gold, though other materials such as copper are also used. For
the substrate one wants good heat conductivity with high electric insulation
withstanding large electric fields (created at sharp (r ≈ 1mm) corners even by
small voltages), and ease of fabrication. Typical materials are silicon, gallium
arsenide, aluminum nitride, aluminum oxide and sapphire (Al2O3), though glass
has also been used.
Another requirement lies in the fact that cold atoms have to be collected

and then transferred towards the small traps on the chip. If one wants to avoid
transferring the atoms from a distant MOT, the chip has to be either transparent
or reflecting, to allow lasers to address the atoms from all directions near the
surface. Nevertheless, experiments exist in which the atoms have been brought
from a distance to a chip (Ott et al., 2001; Gustavson et al., 2002).
Presently, atom chips are built mainly using two technologies: thin film hybrid

technology, or plain nanofabrication which is the first step of the two-stage hybrid
technology.

A.1. Thin film hybrid technology

In this approach one starts from an insulating substrate (e.g. sapphire) and
patterns, using lithographic techniques, a layout of the desired structure onto
a thin (<100 nm) metallic layer. In the second stage, the wires are grown by
electroplating: Metal ions from a solution are deposited onto the exposed metallic
layer, which is now charged. With this process one obtains wires with quite
large cross sections (typical structure widths are 3 to 100mm) that support
high currents. However, miniaturization will be limited to a few micron wire
width. Furthermore, surface roughness is quite large, which makes such surfaces
less suitable for the reflection MOT and atom detection. These drawbacks and
the expected shadows from large etchings between wires, have been dealt with
successfully by covering the chip with an insulating layer and then with a metallic
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Fig. 28. Electroplating. Left: cross section of the Munich-group chip. The metallic layer on top of
the wires gives the chip enhanced surface quality in order to form a mirror MOT. Right: the layout
of the chip. The magnetic ‘conveyor belt’ explained in Sect. II is visible. The wires are connected
to the chip pads from the outside by means of wire bonding. Recently, this chip was used to achieve
Bose–Einstein condensation. Courtesy J. Reichel.

reflection layer (e.g. the Munich chip as shown in Fig. 28) (Reichel et al., 2001).
This, however, carries the price of not enabling atoms to be closer than some
20mm from the wires themselves. A technical advantage of electroplating is that
it wastes less gold or copper because one avoids evaporation of large amounts
of metal, which mostly cover the evaporation chamber and not the chip.
Atom chips fabricated using using this technique have been used sucessfully

by the groups at Harvard (M. Prentiss), Munich (J. Reichel and T.W. Hänsch),
JILA, Boulder (D. Anderson and E. Cornell) and Tübingen (C. Zimmermann).

A.2. Nanofabrication

Atom chip structures can also be fabricated into an evaporated conductive layer
with state-of-the-art processes used for electronic chips. To the best of our
knowledge, this approach is only used by the Heidelberg (formerly Innsbruck)
group. In these atom chips a 1−5mm gold layer is evaporated onto a 0.6-mm
thick semiconductor substrate (GaAs or Si). As GaAs or Si tend to leak currents,
especially in the presence of light, a thin isolating layer of SiO2 is put between
the substrate and the gold layer. The chip wires are defined by 2−10mm wide
grooves from which the conductive gold has been removed. This leaves the chip
as a gold mirror that can be used to reflect MOT laser beams (the 10-mm grooves
impede the MOT operation only in a very slight way). The mirror surface quality
is very high, achieving an extremely low amount of scattered light. The chips
were produced at the microfabrication centers of the Technische Universität Wien
and of the Weizmann Institute of Science, Rehovot, see Fig. 29.
Atom chips fabricated with this method have the advantage that the structure

size is only limited by nanofabrication (<100 nm). The drawback is that the
conductive layer cannot be too thick. This is due mainly to restrictions on the
available thickness of the photoresist used in the process. The thin wires support
only smaller currents, and therefore only smaller traps closer to the surface can
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Fig. 29. Nanofabricated atom chips (Heidelberg). Left: a mounted chip, ready to be put into the
vacuum chamber. The mechanical clamp contacts to the pads are visible. The mounting also includes
cooling in order to remove heat produced by the currents. Center (from top to bottom): details of
fabrication and assembly: (i) a chip in the middle of the fabrication process, after some gold has
been evaporated and before the photoresist has been removed. The visible wires have a cross section
of 1×1mm2; (ii) an electron-microscope view of the surface: a ‘T’ junction of a 10-mm wide wire
is visible as well as the 10mm etchings which define it; (iii) typical design of the U- and Z-shaped
wires placed underneath the chip to help in the initial loading process; the wires can support >50A
of current in DC operation without degrading a p< 10−11 mbar vacuum. Right: a typical design of
an atom chip. On both sides contact pads are visible. The center of the chip is used for loading
the atoms, which are then released into the physics areas: on top, a magnetic guide with arrays
of electric leads, on the bottom, a spiral formed by two parallel wires enables atom guiding in all
directions on the chip.

be built. This disadvantage can be corrected by adding larger wires below the
chip surface, as presented in Fig. 29.
At this stage it is hard to judge what is the best fabrication process. There

are still many open questions. For example, is there a sizable difference in
the resistivity between evaporated gold and electroplated gold? For a direct
comparison, one would have to unify all other parameters such as substrates and
intermediate layers. Another question concerns the final fabrication resolution
one wishes to realize. Assuming one aspires to achieve the smallest possible
trap height above the chip surface for sake of low power consumption and high
potential tailoring resolution, the limit will be at a height below which surface
induced decoherence becomes too strong (see Sect. V). This height, together
with the finite size effects described in Sect. II, will determine the fabrication
resolution needed. Smoothness of resolution will also be required as fluctuating
wire widths will change the current density and therefore the trap frequency in a
way that may hinder the transport of BEC due to potential hills. Finally, as multi–
layer chips using more elaborate 3-dimensional designs are introduced e.g. for
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wire crossings and more complicated structures including photonic elements,
it may be that conductor layers thicker than a few microns will have to be
abandoned. In order to fully exploit the potential of the atom chip in the future,
the technology used will have to be such that all elements could be made with
a suitable process into a monolithic device.
Finally, we note that although usual current densities used in the experiments

range between 106 and 107 A/cm2 (higher with smaller cross sections and
depending on pulse time, work cycle and heat conductivity of substrate),
densities of up to 108 A/cm2 have been reported for cooled substrates (Drndić
et al., 1998). Gold wires have been found to be the best, achieving superior
performance even when compared to superconductors.

B. Loading the Chip

In general there are two different approaches to loading cold atoms into the chip
traps:
(i) Collect and cool the atoms at a different location and transport the cold

ensemble to the surface traps. This may be achieved using direct injection from
a cold atomic beam coming from a low-velocity intense source (LVIS) (Müller
et al., 1999, 2000, 2001) or a released MOT whereby the atoms are pulled by
gravity (Dekker et al., 2000). Transferring the atoms with magnetic traps has
been achieved by (Ott et al., 2001), and a Bose–Einstein condensate (BEC) has
been loaded using optical tweezers (Gustavson et al., 2002).
(ii) Cool and trap atoms close to the surface in a surface MOT, and transfer

the atoms from there to the microtraps on the chip (Reichel et al., 1999; Folman
et al., 2000). For this method the atom chip has to be either transparent or
reflecting.
In the following, we describe experiments performed at Heidelberg (resp.

Innsbruck), Sussex and Munich using the second approach. Further on, several
experiments using the first approach will also be discussed (see Figs. 37 and 38).

B.1. Mirror MOT

The first problem to solve is how to obtain a MOT configuration close to a
surface. This problem has an easy solution if we recall that a circularly polarized
light beam changes helicity upon reflection from a mirror. To the best of our
knowledge, the idea of a reflection MOT was first put into practice with a
pyramid of mirrors and one beam (Lee et al., 1996), as presented in Fig. 30a.
Almost in parallel, a single planar surface with four beams impinging at 45◦

degrees onto the surface was used, thus realizing an eight beam MOT (Pfau
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Fig. 30. (A) a ‘pyramid MOT’ is obtained when one single laser beam is retro-reflected by
a four-sided pyramid in the center of a magnetic quadrupole. The reflections ensure the correct
helicities of the laser beams when the quadrupole field (field lines) has the same symmetry as the
pyramid. (B) The mirror MOT is generated from the pyramid by leaving out 3 of the 4 reflecting
walls. Two MOT beams (I and II) impinge from opposite directions on the reflecting surface of
the atom chip. The correct MOT configuration is ensured together with the magnetic quadrupole
field rotated 45◦ to the atom chip surface as illustrated by the field lines. The magnetic field can
be obtained either by a set of external quadrupole coils, or by a U-shaped wire on the chip. Top:
the Sussex mirror MOT chip setup with the external quadrupole coils on the mounting, inside the
vacuum; two parallel wires embedded in a fiber are positioned on the surface of the mirror, forming
a two-wire guide and a time-dependent interferometer (see Sect. II). Two small ‘pinch’ coils visible
at the edges of the mirror provide longitudinal confinement. Courtesy E. Hinds.

et al., 1997; Schneble et al., 1999; Gauck et al., 1998; Schneble et al., 2001) 10.
The surface MOT most common today derives from the pyramid MOT. The
MOT beam configuration is generated from four beams by reflecting only two

10 In another version of this experiment, an evanescent field just above the extremely thin metal
surface, formed by light beams impinging on the back of the surface, was used as an atom mirror.
This allowed to produce a MOT with reasonable surface induced losses even at the extreme proximity
of 100nm from the surface.
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beams off the chip surface (see Fig. 30b) (Reichel et al., 1999; Folman et al.,
2000). The magnetic quadrupole field for the MOT can be obtained either by a
set of external quadrupole coils, or by superimposing a homogeneous bias field
with the field generated from a U-shaped wire on or below the chip (‘U-MOT’).
External quadrupole coils generate the correct magnetic field configuration if one
of the reflected light beam axes coincides with the coil axis. If the U-MOT is
used, the reflected light beams must lie in the symmetry plane of the U. Trapping
in the U-MOT has the advantage that the MOT is well aligned with respect to
the chip and its microtraps. If the mirror MOT is sufficiently far from the surface
(a few times the MOT radius), its loading rate and final atom number are very
similar to a regular free space MOT under the same conditions (laser power,
vacuum, supply of cold atoms, etc.). In agreement with earlier observations using
wires, the shadows (diffraction patterns) from the 10mm etchings in the gold
surface of the nanofabricated atom chip do not disturb the MOT significantly
(Denschlag, 1998; Denschlag et al., 1999b).
Such atom chip mirror MOTs have been loaded from an atomic beam in Inns-

bruck/Heidelberg (Folman et al., 2000), from the background vapor in Munich
(Reichel et al., 1999), and in a double MOT system in Innsbruck/Heidelberg
(>108 atoms at lifetime <100 s), using either external coils or the U-wire for
the quadrupole field. In addition, at Sussex and Harvard surface MOTs were
realized using permanent and semi-permanent (magnetizable cores) magnetic
structures.
As an example we describe the Innsbruck/Heidelberg lithium setup. Figure 31

(overleaf) shows a top view of the mirror MOT just above the chip with
some of its electric connections. For the transfer into the U-MOT, the large
external quadrupole coils are switched off while the current in the U-shaped
wire underneath the chip is switched on (up to 25A), together with an external
bias field (8G). This forms a nearly identical, but spatially smaller quadrupole
field as compared to the fields of the large coils. By changing the bias field,
the U-MOT can be compressed and shifted close to the chip surface (typically
1−2mm). The laser power and detuning are changed to further cool the atoms,
giving a sample with a temperature of about 200mK.

B.2. Transferring atoms to the chip surface

After the U-MOT phase, atoms are cooled using optical molasses, optically
pumped and transferred into a matched magnetic trap, typically produced by
a thick Z-shaped wire plus bias field. From there atoms are transferred closer
and closer to the chip and loaded sequentially into smaller and smaller traps. In
general, it is favorable to lower the trap towards the surface by increasing the
magnetic bias field. This way the trap depth increases and less atoms are lost
due to adiabatic heating during compression. Unfortunately this is not feasible
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Fig. 31. Loading of cold atoms close to the surface of an atom chip. Top left: Picture of the
mirror MOT, taken from above; the cloud is visible at the center while the electrical contacts can be
seen at the edges. Top right: schematic of the MOT beams and quadrupole coils. Center row: Atoms
trapped in the U-MOT created by a current in the large U-shaped wire underneath the chip and a
homogeneous bias field. Bottom row: Atoms in a magnetic trap generated by the U-wire field; from
left to right, the columns show the top, front and side (direction of bias field) views respectively, the
far right column shows the schematics of the wire configuration; current-carrying wires are marked
in black. The front and side views show two images: the upper is the actual atom cloud and the lower
is the reflection on the gold surface of the chip. The distance between both images is an indication
of the distance of the atoms from the chip surface. The pictures of the magnetically trapped atomic
cloud are obtained by fluorescence imaging using a short laser pulse (typically < 1ms).

all the way: Finite size effects limit small traps to thin wires, at the price of not
being able to push high currents.
The basic transfer principle from a large wire to a small wire is to first

switch on the current for the smaller trap, and then to ramp down the current
in the bigger trap maintained by a thicker wire (Fig. 32). Further compression
is achieved by using smaller and smaller currents. Care has to be taken that
the transfer is adiabatic, especially with respect to the motion of the potential
minimum. By an appropriate change of the bias field, the compression of the
atoms in the shrinking trap can be performed very smoothly. Transferring into
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Fig. 32. Principle of compressing and loading wire guides. The position of the surface-mounted
wires and equipotential lines of the trapping potential are shown. Top row: the transfer from two
large 200mm wires to one small 10mm wire. In (a)−(c) the current in the small wire is constant
at 300mA and the bias field is constant at 10G. The current in the two large wires is decreased
from 2A in each wire to zero. This transfers the atoms to the small wire. (d) By increasing the bias
field the trap can be compressed further. Bottom row: the transfer from one large 200mm wire to
one small 10mm wire. In (a)−(d) the current in the large wire drops from 2A to zero. The thick
line shows how the trap center moves during transfer. A much weaker confinement during transfer
is obtained in this configuration.

more complicated potential configurations one has to avoid the opening of escape
routes for the trapped atoms.
For an adiabatic transfer of relatively hot atoms, the main loss is due to

heating: when compressing by lowering the current, high-lying levels may
eventually spill over the potential barrier. Significant loss occurs if the trap depth
is much smaller than 10 times the temperature of the atomic ensemble. Other
loss mechanisms are described in Sect. V. For thermal clouds, typical achieved
transfer efficiencies from the MOT to the magnetic chip trap can be as high as
60%.
As a detailed example we describe the loading of the first of the Innsbruck

experiments (Folman et al., 2000). After accumulating atoms in a mirror MOT
and transferring them to the U-MOT, the laser beams are switched off and
the quadrupole field generated by the U-shaped wire below the chip surface
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Fig. 33. Compressing a cloud of cold atoms on an atom chip: Top row: view from the top;
center row: front view; bottom row: side view. The first three columns show atoms trapped on the
chip with the two U-shaped wires. The compression of the trap is accomplished by increasing the
bias field. The last row displays images from a Z-trap created by 300mA current through the 10mm
wire in the center of the chip. The pictures of the magnetically trapped atomic cloud are obtained
by fluorescence imaging using a short (<1ms) molasses laser pulse.

serves as a magnetic trap for weak-field seekers (Fig. 31: U-trap). The magnetic
trap is lowered further towards the surface of the chip by increasing the bias
field. Atoms are now close enough to be trapped by the chip fields. Next, a
current of 2A is sent through two 200mm U-shaped wires on the chip, and
the current in the U-shaped wire located underneath the chip is ramped down
to zero. This procedure brings the atoms closer to the chip, compresses the
trap considerably, and transfers the atoms to a magnetic trap formed by the
currents on the chip surface. This trap is further compressed and lowered towards
the surface (typically <100mm) by increasing the bias field (Fig. 33). From
there the atoms are transferred to a microtrap created by a 10mm Z-shaped
wire.
In the lowest height and most compressed trap achieved to date, a 1×1mm2

Z-shaped wire is used with a current of 100mA (Heidelberg). With a bias field
of 30G the atoms are trapped at a height of about 7mm above the surface and
at an angular oscillation frequency w ≈ 2p × 200 kHz (magnetic field gradients
of 50 kG/cm) for several tens of ms (see Eq. 6 for typical trap frequencies). At
such a small trap height several problems come into play: First, with the present
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2mm distance between the bends of the Z-shaped wire, the Ioffe–Pritchard
configuration is nearly lost and one is left with a single-wire quadrupole field
where atoms can suffer Majorana flips. Two easy remedies would involve smaller
Z lengths or a slight tilt of the bias field direction. Second, the trap is so tight
that the number of atoms that survive the transfer and compression is small.
This limitation should not be applicable in the case of a BEC as there are no
high-lying states where atoms run the risk of spilling over the finite trap barrier.
A third problem has to do with the observation of the atoms: even with negligible
stray light from surface scattering or blurring by atomic motion, it is found that
direct observation of extremely tight traps close to the surface (<20mm) is very
hard. The signal suppression is probably due to large Zeeman shifts in the cloud,
which together with optical pumping processes dramatically reduce the scattered
light. In such a case, one can observe the atoms after trapping by ‘pulling’ them
up, away from the surface into a less compressed trap. This may be done simply
by increasing the wire current or decreasing the bias field.

B.3. Observing atoms on the chip

A simple way to observe the trapped atoms is by fluorescence imaging. For this,
one illuminates the cloud with near-resonant molasses laser beams for a short
time (typically much less than 1ms). The scattered light is imaged by CCD
cameras as shown in Fig. 31 and Fig. 33. One should use short enough exposure
times to avoid blurring of the image due to atomic motion. One also has to
select the camera positions wisely to avoid stray light caused by scattering off
the grooves in the atom chip surface. Furthermore, it is important that the metal
surface itself shows minimal light scattering. Here, the excellent surface quality
of evaporation on semiconductor surfaces is advantageous.
A different possibility is to use absorption imaging. If the probe beam is

directed parallel to the chip surface, the surface quality is not as critical, and
one does not have to take care of diffraction peaks from the grooves. Such
absorption imaging is used by the Munich, Tübingen, Heidelberg, and MIT
groups. Profiting from an excellent surface mirror quality, the Heidelberg group
has also implemented absorption imaging with laser beams reflected from the
chip surface, which allows direct distance measurements. More sophisticated
methods such as phase contrast imaging will be important for more complicated
atom-optical devices on atom chips, where non-destructive observation very
close to the chip surface becomes essential. For an overview of these methods,
we refer the reader to the many BEC review papers (see, for example, Ketterle,
1999).
Finally, future light optical elements incorporated on the chip, such as

microspheres or cavities, will allow for much better detection sensitivity, possibly
at the single-atom level (see Sect. VI.A.3). Such work has been started in several
laboratories.



314 R. Folman et al. [IV

C. Atom Chip Experiments

Since the first attempts two years ago, the atom chip has now become a ‘tool
box in development’ in numerous labs around the world. To the best of our
knowledge these include (in alphabetical order) the groups at Boulder/JILA
(D. Anderson and E. Cornell), CalTech (H. Mabuchi), Harvard (M. Prentiss),
Heidelberg (J. Schmiedmayer), MIT (W. Ketterle), Munich (J. Reichel and
T.W. Hänsch), Orsay (C. Westbrook and A. Aspect), Sussex (E. Hinds), and
Tübingen (C. Zimmermann). Unfortunately, we will not be able to present in
detail all the extensive work done, nor will we be able to touch upon other
surface-related projects, such as the atom mirror.

C.1. Traps

The simplest traps (i.e 3-dimensional confinement) are usually based on a straight
wire guide with some form of longitudinal confinement, which is produced either
by external coils or by wires on the chip (Sect. II.A.4). Additional wires for on-
board bias fields may also be added.
As an example, we start with the simple microtraps realized in Inns-

bruck/Heidelberg with lithium (Folman et al., 2000) and Munich with rubidium
atoms (Reichel et al., 1999; Reichel et al., 2001). Here, the traps are based on
wires of 1 to 30mm width with which surface–trap distances below 10mm were
achieved. The wires used are either U-, Z- or H-shaped.
In these experiments, the compression of traps and guides was also inves-

tigated (Folman et al., 2000; Reichel et al., 2001). This is done by ramping
up the bias magnetic field. In this process one typically achieves gradients of
>25 kG/cm. With lithium atoms, trap parameters with a transverse ground-state
size below 100 nm and angular frequencies of 2p × 200 kHz were achieved
(Folman et al., 2000), thus reaching the parameter regime required by quantum
computation proposals (Calarco et al., 2000; Briegel et al., 2000).
In addition, an on-board bias field for the thin wire trap was also created

by sending currents through two U-shaped wires in the opposite direction
with respect to the thin wire current, substituting the external bias field
(see Sect. II.A.2). Hence, trapping of atoms on a self-contained chip was
demonstrated (Folman et al., 2000).
An example of a different configuration was realized in Munich with rubidium

atoms. Three-dimensional trapping was achieved by crossing two straight wires
and choosing an appropriate bias field direction, as discussed in Sect. II.A.4
(Reichel et al., 2001) (Fig. 34). Here the additional wire actually provides the
endcaps that were previously provided in the Z- and U-shaped traps by the same
wire. This type of trap will be useful for the realization of arrays of nearby
traps. In Tübingen and Sussex longitudinal confinement has been achieved by
additional coils.
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Fig. 34. Ioffe–Pritchard trap created by two intersecting wires. The left-hand column corresponds
to I1 > I2 and |B0,y | > |B0,x|; in the right-hand column both relations are reversed. Top row:
conductor pattern; the thickness of the arrows corresponds to the magnitude of the current; dashed
arrows indicate the bias field direction. Middle row: calculated contours of the magnetic field
modulus |B(x, y)| indicating how the long trap axis turns; the left potential continuously transforms
into the right one when the parameters are changed smoothly. Bottom row: absorption images
corresponding to the two situations. Courtesy J. Reichel.

Finally, the splitting of a single trap into two has been demonstrated in
Heidelberg, Munich and Sussex. Such a time-dependent potential is presented
in Fig. 35; as explained in Sect. II, it may form the basis of an interferometer.
It is also the first step in creating multi-well traps or arrays of traps.

Fig. 35. Top view of a thermal 200mK cloud of lithium atoms in a double-well potential 40mm
above the chip surface. The minima are separated by 350mm. The imaging flash light pulse is 100ms
long. The splitting may be done as slow as needed in order to achieve adiabaticity.
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More sophisticated designs have been suggested by Weinstein and Libbrecht
(1995) (see Sect. II.A.5) and fabricated (e.g. Harvard: Drndić et al., 1998).

C.2. Guiding and transport

To achieve mesoscopic atom optics on a chip, it is essential to have reliable
means of transporting atoms. One such device is an atomic guide using a single
wire with a bias field. Such an experiment is shown in Fig. 36a. The Z-trap is
transformed into an L-shaped guide by re-routing the current from one of the
Z leads. The atoms expand along the guide due to their thermal velocity (Folman
et al., 2000). Similarly, it was demonstrated that one can directly load the guide
from a larger magnetic trap on the chip and skip the small surface trap.
It is also possible to achieve a continuously loaded magnetic guide using a

leaky microtrap (see Fig. 36b). This is achieved by lowering the barrier between
the trap and the guide, the barrier being simply the trap end cap, whose height
may be controlled by changing the current in the microtrap (Brugger et al.,
2000).
However, there are limitations to such a simple guide. Using a homogeneous

external bias field, the guide has to be straight (linear), since the bias field must
be perpendicular to the wire as discussed in Sect. II.A.2. This considerably limits
the potential use of the whole chip surface. A possible solution is to create the
bias field using on-chip wires (3-wire configuration shown in Fig. 2) or the
two-wire guide configuration discussed in Sect. II.A.3, in which the currents
are counter-propagating and the bias field is perpendicular to the chip surface.
A first experiment was conducted by M. Prentiss’ group at Harvard (Dekker
et al., 2000). Here, cesium atoms were dropped from a MOT onto a vertically
positioned chip, on which a two-wire guide managed to deflect the atoms from
their free fall (see Fig. 37). Furthermore, a four-wire guide was realized whereby
the two extra wires served as the source for the bias field (see also Fig. 2).

Fig. 36. (a) Cold atoms in a microtrap (left) and released all at once into a linear guide (right).
(b) Continuous loading of an atom guide by leaking atoms from a reservoir created by a U-trap into
the guide by ramping down the current in the U. Propagation is due to thermal velocity.
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Fig. 37. Vertical bias field: this Harvard experiment realized two-wire vertical guides, enabling
the guiding of atoms in a variety of directions. Left: setup. Right: absorption of probe beam versus
position along x at 3.5mm below the output of the guide. The left and right peaks are attributed to
unaffected atoms and atoms deflected by the outside of the guide potential, respectively. The open
triangles are the data collected while the guide is turned off. Courtesy M. Prentiss.

Guiding along a curved two-wire guide has been achieved in Heidelberg, and
experiments to guide atoms along a spiral are in progress (for the chip design
see Fig. 29).
Several experiments have achieved guiding without any bias field by trapping

the weak-field seekers in the minimum existing exactly in between two parallel
wires with co-propagating currents (see Sect. II.A.3). In Fig. 38, we present such

Fig. 38. The JILA setup in which a ‘low-velocity intense source’ (LVIS) was used to directly load
the two-wire guide. The data show the need for strong potentials with which the magnetic guide
can overcome the kinetic energy in order to deflect the atoms, thereby bypassing the beam block.
Courtesy E. Cornell.
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Fig. 39. Moving atoms using a magnetic conveyor belt. (a) Potential for various phases of the
movement. The numbers indicate the position of the atoms as shown in the absorption images in
column (b). (c) Linear collider experiment: left, time evolution of the centers of mass of the two
clouds; right, absorption images of the colliding atoms. Courtesy J. Reichel.

a setup (Müller et al., 1999). Another similar use of this principle (in this case,
not surface-mounted), in which a storage ring has been realized is presented
in Sect. III.A.7. Although advantageous for the lack of bias fields, this concept
may be hard to implement on miniaturized atom chips as the atoms would be
extremely close to the surface for 1−2-mm thick wires.
Guiding with semi-permanent magnets has also been achieved (Rooijakkers

et al., 2001; Vengalattore et al., 2001). These materials enhance the magnetic
fields coming from current-carrying wires (see Sect. II.A.10 for a description).
Completely permanent magnets are also being contemplated to avoid current
noise. However, to the best of our knowledge, only atom mirrors have thus far
been realized this way (Hinds and Hughes, 1999).
A further limitation of the guides described above is that they rely on thermal

velocity. Much more control can be achieved by transporting atoms using moving
potentials, as described in Sect. II.A.7. Such a transport device was implemented
in an experiment in Munich. Using the movable 3-dimensional potentials of their
‘motor’, atoms can be extracted from a reservoir and moved or stopped at will
(Hänsel et al., 2001b) (Fig. 39). This considerably improves the possibilities of
the chip, as demonstrated by the ‘linear collider’ shown in Fig. 39c, in which
the motor was used to split a cloud in two and then to collide the two halves
(Reichel et al., 2001).
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C.3. Beam splitters

As discussed in Sect. II.A.8, one may combine the wire guides as described in
the previous section to build more complicated atom-optical elements. One such
element is a beam splitter. A simple configuration is a Y-shaped wire (Fig. 40a)
which creates a beam splitter with one input guide for the atoms, the central wire
of the Y, and two outputs guides, the right and left arms. The atoms are split by

Fig. 40. Beam splitter on a chip. (a) Chip outline; (b) fluorescence images of guided atoms. Two
large U-shaped 200mm wires are used to load atoms into the input guide of a 10-mm Y-beam splitter.
In the first two pictures in (b), a current of 0.8A is driven only through one side of the Y, therefore
guiding atoms either to the left or to the right; in the next two pictures, taken at two different bias
fields (12G and 8G, respectively), the current is divided in equal parts and the guided atoms split
into both sides. (c) Switching atoms between left and right is achieved by changing the current ratio
in the two outputs and keeping the total current constant as before. The points are measured values
while the lines are obtained from Monte Carlo simulations with a 3-G field along the input guide.
The kinks in the lines are due to Monte Carlo statistics.
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means of symmetric scattering off the potential hill, which they encounter at the
splitting point. Such a beam splitter on an atom chip was realized by Cassettari
et al. (2000) in Innsbruck. Atoms were released from a chip microtrap and guided
into the beam splitter. Depending on how the current in the input wire is sent
through the Y, atoms can be switched from one output arm of the Y to the other,
or directed to the two outputs with any desired ratio (Fig. 40). Similar beam
splitters have been widely used for the splitting of guided electron waves in solid-
state quantum electronics devices. For example, two Y splitters were put back
to back to form an Aharonov–Bohm type interferometer (Buks et al., 1998).
A four-port beam splitter has been realized at JILA by the group of E. Cornell

and D. Anderson by making a near X-shape out of two wires which avoid a full
crossing (Müller et al., 2000). In this experiment, two input guides formed by
two current-carrying wires, merge at the point of closest approach of the wires
so that the two minima merge into one, and then again split into two independent
minima.

C.4. BEC on a chip

A degenerate quantum gas in a microtrap is an ideal reservoir from which atoms
can be extracted for the experiments on the chip. For example a BEC will take a
similar role as source of bosonic matter waves as the Fermi sea has in quantum
electronics. A clear advantage of a BEC is the higher efficiency of the transfer
to the smallest compressed surface traps, which involves high compression,
leading to large losses for thermal atoms if the trap depth is not appropriate.
The condensate occupies the trap ground state and should follow any adiabatic
compression of the trap. Second, a BEC in a microtrap also provides the initial
atomic state needed to initiate delicate quantum processes such as interference
or even a well-defined entanglement between atoms in two nearby traps.
In the last year three groups in Tübingen, Munich and Heidelberg succeeded

in making and holding a Bose–Einstein condensate in a surface trap (Ott et al.,
2001; Hänsel et al., 2001a; Reichel, 2002), and the MIT group managed to
transfer a BEC to a surface trap, and load it into it (Leanhardt et al., 2002).
These experiments showed that making the BEC in a surface trap can be much
simpler. For example in very tight microtraps the BEC is formed in much shorter
time as the tightness of the traps allows for fast thermalization and consequently
fast evaporative cooling which relaxes the vacuum requirements, permitting the
use of a very simple one-MOT setup to collect the atoms (Hänsel et al., 2001a).
In the Tübingen experiment (Ott et al., 2001), a relatively large condensate

of 4×105 87Rb atoms has been formed at a height of some 200mm above the
surface. The experiment made use of a pulsed dispenser as an atom source,
allowing ultra high vacuum (2×10−11 mbar) while the dispenser was off. This
enabled the use of a simple single-MOT setup. In the experiment, atoms were
transferred magnetically from a distant six-beam MOT to the chip using two
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Fig. 41. Left: the Tübingen setup. The first pair of coils (right) produced the MOT and then the
atoms were conveyed to the trap formed by the second pair of coils. The chip mounting is visible
within the second pair of coils. Right: absorption images of the compression and final cooling stage;
(a) compression into the microtrap; (b) RF cooling in the microtrap; (c) release of the condensate
after 5, 10, and 15ms time of flight. Courtesy C. Zimmermann.

adjacent pairs of coils (Fig. 41). In the chip trap, condensation was reached
after 10 to 30 s of forced RF evaporative cooling. Aside from being the first
surface BEC, the chip used in Tübingen with its 25-mm long wires provides a
highly anisotropic BEC (aspect ratio 105), approaching a quasi one-dimensional
regime. In recent work, the BEC was taken to a height of only 20mm without
observing substantial heating (Fortagh et al., 2002). The smallest structure
holding the BEC was a 3×2.5mm2 cross section copper wire with a current
of 0.4A. The BEC had a lifetime of 100ms in the compressed trap (limited by
3-body collisions) and a 1 s lifetime once it was expanded into a larger trap.
The second experiment producing a BEC in a microtrap was performed in

Munich (Hänsel et al., 2001a) (Fig. 42). Here an attractively simple setup
with a continuous dispenser discharge was used. Consequently, the vacuum
background pressure was high (10−9 mbar) and evaporative cooling had to be
achieved quickly. RF cooling times were as short as 700ms thanks to the strong
compression in the microtrap which results in a high rate of elastic collisions.
The final BEC included some 6000 atoms at a height of 70mm. The trapping
wire was 1.95mm long and had a cross section of 50×7mm2; the current
density approached 106 A/cm2. Strong heating of the cloud was observed in this
experiment but the source remains elusive (possibly, current noise). A beautiful
feature of this experiment is the use of the magnetic ‘conveyor belt’ described
before (Sects. II.A.7 and IV.C.2, Fig. 39), in order to transport the BEC during
a time of 100ms over a distance of 1.6mm without destroying it (see Fig. 42).
Furthermore, the ability of the ‘motor’ to split clouds was used to show that a
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Fig. 42. Munich atom chip BEC experiment. Left: schematics of the simple vapor cell apparatus.
Center: time-of-flight images showing the formation of a BEC. Right: (a) the BEC is transported
in a movable 3-dimensional potential minimum; (b) at the end it is released and is observed falling
and expanding. Courtesy J. Reichel.

BEC survives such a splitting. Two such halves were then released into free fall
exhibiting interference fringes as they overlapped.
In the third experiment, performed in Heidelberg, typically 3×105 87Rb atoms

were condensed in a Z-wire Ioffe–Pritchard trap, created by a structure under-
neath the chip, and subsequently transferred to a Z-trap on the chip (Fig. 43).
First, more than 3×108 atoms are loaded into a mirror MOT (<10−11 torr)
created by external quadruople coils using a double MOT configuration with a
continuous push beam. The atoms are then transferred into a U-MOT, where they
are compressed and after molasses-cooling loaded into a Z-wire trap. The BEC
is formed by forced RF evaporation in typically 20 seconds. Creating the BEC
using a wire structure underneath the chip allows to place other surfaces close
to the BEC while maintaining the high precision of a microtrap for manipulating
the cold atoms. This will open up the possibility to study surfaces with the cold
atoms and to transfer the BEC to surface traps based on dipole forces in light
fields created by micro-optic elements and evanescent fields.
The MIT group transported a BEC of the order of 106 Na atoms into an

auxiliary chamber and loaded it into a magnetic trap formed by a Z-shaped
wire (Gustavson et al., 2002) (Fig. 44). This was accomplished by trapping
the condensate in the focus of an infrared laser and translating the location
of the laser focus with controlled acceleration. This transport technique avoids
the optical and mechanical access constraints of conventional condensate
experiments. The BEC was consequently loaded into a microstructure (Leanhardt
et al., 2002).
Finally, we would like to note that currently other groups are also working
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Fig. 43. Heidelberg atom chip BEC experiment. (a) Schematics of the double MOT setup. Atoms
from a lower vapor cell MOT are transferred to a UHV mirror MOT using a continuous push beam.
(b) Photograph of the upper (UHV) chamber. (c) The mounted chip and the U- and Z-shaped wire
structure underneath the chip (inset). (d) Thermal cloud, BEC with thermal background, and pure
BEC released and expanded for 15ms.

Fig. 44. Transfer of a BEC to a microtrap. Left: schematics of the setup with the science chamber
housing the Z-trap on the far left and the BEC production chamber on the right. Right: condensates
in the science chamber (a) optical trap and (b) Z-trap. The condensate was (c) released from an
optical trap and imaged after 10ms time of flight and (d) released from a wire trap and imaged after
23ms time of flight. (e) Schematic of the Z-trap. Courtesy W. Ketterle.

towards BEC in surface traps, and we expect to see many different successful
experiments shortly.
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V. Loss, Heating and Decoherence

For atom chips to work, three main destructive elements have to be put under
control:
(i) Trap loss: It is crucial that we are able to keep the atoms inside the trap as

long as needed.
(ii) Heating: Transfer of energy to our quantum system may result in excitations

of motional degrees of freedom (e.g. trap vibrational levels), and conse-
quently in multimode propagation which would render the evolution of the
system ill-defined.

(iii) Decoherence or dephasing as it is sometimes referred to also originates from
coupling to the environment. While heating requires the transfer of energy,
decoherence is more delicate in nature (Stern et al., 1990). Nevertheless, the
effect is just as harmful because superpositions with a definite phase relation
between different quantum states are destroyed. This has to be avoided, e.g.
for interferometers or quantum information processing on the atom chip.

In discussing these three points, we focus on the particularities of atoms in
strongly confined traps close to the surface of an atom chip. The small separation
between the cold atom cloud and the ‘hot’ macroscopic environment raises the
intriguing question of how strong the energy exchange will be, and which limit
of atom confinement and height above the surface can ultimately be reached.
We review theoretical results showing that fluctuations in the magnetic trapping
potential give a fairly large contribution to both atom loss and heating. In
addition, thermally excited near fields are also responsible for loss and may
impose limits on coherent atom manipulation in very small (mm-sized) traps
on the atom chip. Estimates for the relevant rates are given, and we outline
strategies to reduce them as much as possible. Experimental data are not yet
reliable enough to allow for a detailed test of the theory, but there are indications
that field fluctuations indeed influence the lifetime of chip traps (Hänsel et al.,
2001a; Fortagh et al., 2002).

A. Loss Mechanisms

A.1. Spilling over a finite potential barrier

Compression of a thermal atom cloud can lead to losses when the cloud
temperature rises above the trap depth. The smallest losses occur if the
compression is adiabatic. Atoms then stay in their respective energy levels as
the level energy increases. They can nevertheless be lost during trap compression
because of the finite trap depth. It should be noted that this loss occurs for the
highest energies in the trap and can also be used to evaporatively cool the cloud
(see Luiten et al., 1996 for a review).
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A.2. Majorana flips

If the atomic magnetic moment is not able to follow the change in the direction
of the magnetic field, the spin flips, and a weak-field-seeking atom can be turned
into a strong-field seeker which is not trapped (Majorana, 1932; Gov et al., 2000).
This occurs when the adiabatic limit (Larmor frequency wL much larger than trap
frequency w) does not hold. Majorana flips thus happen at or near zeros of the
magnetic field. For this reason, additional bias fields are employed to ‘plug the
hole’ in the center of a quadrupole field.
For a magnetic field configuration with a zero, loss can be reduced if the

atoms circle around it. The loss rate is then inversely proportional to the angular
momentum because the latter determines the overlap with the minimum region
(Bergeman et al., 1989; Hinds and Eberlein, 2000).
In Ioffe–Pritchard traps with nonzero field minimum Bip, there is a finite

residual loss rate that has been calculated by Sukumar and Brink (1997). For
a model atom with spin 1/2 in the vibrational ground state, one gets

g =
pw
2
√
e
exp(−m‖Bip/àw)

= 6×105 s−1 w/2p
100 kHz

exp

(
−14

(m‖/mB)(Bip/1G)
w/2p 100 kHz

)
,

(18)

where m‖ is the component of the magnetic moment parallel to the trapping
field. Note the exponential suppression for a sufficiently large plugging field
Bip, typical of nonadiabatic (Landau–Zener) transitions. Choosing a Larmor
frequency wL = m‖Bip/à > 10w, one gets a lifetime larger than �104 trap
oscillation periods. A ratio wL /w > 20 already pushes this limit to �108.

A.3. Noise-induced flips

Fluctuations in the magnetic trap fields can also induce spin flips into untrapped
states, and lead to losses. These fluctuations are produced by thermally excited
currents in the metallic substrate or simply by technical noise in the wire
currents. Fluctuations of electric fields and of the Van der Waals atom–surface
interaction have been shown to be less relevant for typical atom traps (Henkel
and Wilkens, 1999; Henkel et al., 1999).
The trapped spin is perturbed via the magnetic dipole interaction and flips at

a rate given by Fermi’s Golden Rule:

g =
1
2à2

∑
k ,l = x,y,z

〈i|mk | f 〉 〈 f |ml |i〉 SklB (wL), (19)

where SklB (wL) is the noise spectrum of the magnetic fields, taken at the Larmor
frequency wL. We use the following convention for the noise spectrum:

SijB (w) = 2
∫ +∞

−∞
dt eiwt 〈Bi(t + t)Bj(t)〉 , (20)
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Table II
Trace of the geometric tensor Yij that determines the loss due to the thermally fluctuating magnetic

near field, according to the rate (22) a

Geometry Half-space Layer Wire

TrYij p /h pd/h2 p2a2/ (2h3)

a The metallic layer has a thickness d, assumed much smaller than the distance h to the trap center.
The wire has a radius a � h, and h � d is assumed where d is the skin depth of the metal. Taken
from Henkel and Pötting (2001). A more accurate calculation of Tr Yij corrects the results of table 2
by a factor of 1/2 for the half-space and the layer (Henkel and Scheel, 2002).

where 〈· · ·〉 is a time average (experiment) or an ensemble average (theory). The
rms noise is thus given by an integral over positive frequencies

〈Bi(t)Bj(t)〉 =
∫ ∞

0

dw
2p
SijB (w). (21)

For example, the rms magnetic field in a given bandwidth Df for a white noise
spectrum SB is given by Brms =

√
DfSB. The spectrum SB thus has units G2/Hz.

A.3.1. Thermally excited currents. An explicit calculation of the magnetic
noise due to substrate currents (‘near field noise’) yields the following estimate
for the loss rate (Henkel et al., 1999; Henkel and Pötting, 2001):

g � 75 s−1
( m /mB)2(Ts /300K)

(r/rCu)
(TrYij × 1mm), (22)

where 1/r is the substrate conductivity (for copper, rCu = 1.7×10−6W cm) and
Ts is the substrate temperature. Note that the Larmor frequency wL actually does
not enter the loss rate. The ‘geometric tensor’ Yij has dimension (1/length) and
is inversely proportional to the height h of the trap center above the surface
(Table II). The loss rate (22) is quite large for a trap microns above a bulk metal
surface. One can reduce the loss by two orders of magnitude when bulk metal in
the vicinity of the trap is replaced by microstructures. For a thin metallic layer
of thickness d, the loss rate (22) is proportional to d/h2, and for a thin wire
(radius a), a faster decrease ∝ a2/h3 takes over (Table II).
The estimates of Table II apply only in an intermediate distance regime,

d, a � h � d(wL): on the one hand, when the trap distance h is smaller than
the size of the metallic structures, one recovers a 1/h behaviour characteristic for
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Fig. 45. Loss rates in a magnetic trap above a copper surface. Results for two different Larmor
frequencies wL /2p = 1MHz (curve a) and 100MHz (curve b) are shown. The arrows mark the
corresponding skin depths d(wL). Equation (22) applies to the region h � d(wL). See Henkel et al.
(1999) for details. Parameters: spin S = 1

2 , magnetic bias field aligned parallel to the surface. The

loss rate due to the black-body field is about 10−13 s−1 at 100MHz (not shown). Reproduced from
Henkel et al. (1999), Appl. Phys. B 69 (1999) 379, Fig. 3, with permission. © Springer-Verlag.

a metallic half-space; on the other hand, steeper power laws take over at large
distances, when h gets comparable to or larger than the skin depth

d(wL) =

√
2r
m0wL

= 160mm

√
r/rCu√

wL /2p 1MHz
. (23)

Recall that the skin depth characterizes the penetration of high-frequency
radiation into a metal. This crossover can be seen in Fig. 45 where the flip
rate (22) is plotted vs. the trap height h for a metallic half-space. For details,
we refer to Henkel et al. (1999) and Henkel and Pötting (2001). Note that an
increase of the Larmor frequency only helps to reduce the substrate-induced flips
in the regime where h � d(wL). Equation (23) shows that this requires, for
h � 1mm, quite large Larmor frequencies wL /2p � 10GHz, meaning large
magnetic (bias) fields.

A.3.2. Technical noise. Additional loss processes may be related to fluctuations
in the currents used in the experiment, for example in the chip wires and in
the coils producing the bias and compensation fields. Let us focus on the wire
current, and denote by SI (w) its noise spectrum. Neglecting the finite wire size,
the magnetic field Bw = m0Iw/2ph is given by Eq. (3), and we find the following
upper limit for the noise-induced flip rate:

g � m2

2à2

( m0
2ph

)2
SI (wL) � 1.3 s−1

(m /mB)2

(h/1mm)2
SI (wL)
SSN

, (24)

where the reference value SSN = 3.2×10−19 A2/Hz corresponds to shot noise at a
wire current of 1A (SSN = 2eIw). This estimate is pessimistic and assumes equal
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noise in both field components parallel and perpendicular to the static trapping
field. Nevertheless, it highlights the need to use ‘quiet’ current drivers for atom
chip traps. In future chip traps with strong confinement, it may turn out necessary
to reduce current noise below the shot-noise level. This can be achieved with
superconducting wires or permanent magnets, as discussed in Sect. II.A.10 and
reviewed by Hinds and Hughes (1999). See also Varpula and Poutanen (1984).

A.4. Collisional losses

A.4.1. Background collisions. Here, collisions between background gas atoms
and trapped atoms endow the latter with sufficient energy to escape the trap. In
order to estimate the loss rate per atom g , let us assume that the background gas
is dominated by hydrogen molecules and at room temperature. We then get:

g = nbg v̄bg s = 3.8×10−3 s−1 p bg
10−10 mbar

s
1 nm2

, (25)

where pbg is the background pressure. Typical collision cross sections s are in
the 1 nm2 = 100 Å2 range (Bali et al., 1999). As a general rule, one gets a trap
lifetime of a few seconds in a vacuum of 10−9 mbar. It is clear that vacuum re-
quirements will become more stringent as longer interaction times are required.

A.4.2. Collisions of trapped atoms. For traps in UHV conditions, and especially
for highly compressed traps and high-density samples, the dominant collisional
loss mechanisms involve collisions between trapped atoms. The scattering of
two atoms leads to a loss rate per atom scaling with the density, while 3-body
collision rates scale with the density squared.
Spin exchange. This process corresponds to inelastic two-body collisions

where the hyperfine spin projections mF are conserved, but not the spins F
themselves. In the alkali atoms 7Li, 23Na, and 87Rb, for example, a collision
between two weak-field-seeking states |F = 1, mF = −1〉 can lead to the
emergence of two strong-field seekers |2, −1〉 that are not trapped. This transition
requires an excess energy of the order of the hyperfine splitting to occur, which
is typically not available in cold atom collisions. Exothermic collisions between
the weak-field seekers |1, −1〉, |2, +1〉, and |2, +2〉 are not suppressed, however.
The corresponding rate constant is proportional to n(aS − aT )2 where aS (aT )
are the scattering lengths in the singlet (triplet) diatomic potential (Côté et al.,
1994). For 87Rb, these scattering lengths accidentally differ very little, leading
to a very small spin flip rate (Moerdijk and Verhaar, 1996; Burke et al., 1997).
As a consequence, 87Rb is practically immune to spin exchange and can form
stable condensates, even of two hyperfine species (Myatt et al., 1997; Julienne
et al., 1997; Kokkelmans et al., 1997). Spin-polarized samples consisting only
of |2, +2〉 cannot undergo spin exchange because of mF conservation, the other
available states having smaller F . For more details, we refer to the review by
Weiner et al. (1999) and references therein.
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Spin relaxation. This process also results from inelastic two-body collisions,
but does not conserve mF . Spin relaxation is caused by a flip of the nuclear spin
and occurs at a lower rate because of the smaller nuclear magnetic moment. In
87Rb for example, the trapped weak-field seeker |1, −1〉 may be changed into the
untrapped strong-field seeker |1, +1〉. More details can be found in the theoretical
work by Burke et al. (1997), Julienne et al. (1997), Timmermans and Côté
(1998), the experimental work of Gerton et al. (1999) and Söding et al. (1998),
and the review paper by Weiner et al. (1999).
Three-body recombination. In this process, two atoms combine to form a

molecule. Although the molecules may have a definite magnetic moment and
still be trapped, the reaction releases the molecular binding energy that is shared
as excess kinetic energy between the molecule and the third atom. The binding
energy being typically quite large (larger than 100meV), both partners escape the
trap (Fedichev et al., 1996; Moerdijk and Verhaar, 1996; Moerdijk et al., 1996;
Esry et al., 1999). For references to experimental work, see Burt et al. (1997),
Söding et al. (1999) and Weiner et al. (1999). We expect three-body processes to
be the dominant collisional decay channel in strongly compressed traps because
the collision rate per atom increases with the square of the atomic density.

A.5. Tunneling

Traps very close to the surface might also show loss due to tunneling of atoms out
of the local minimum of the trap towards the surface. The rate can be estimated
by

g ~ w
∫
barrier width

1
à
exp

(
−
√
2m[U (z) − E]

)
dz, (26)

where U (z) − E is the height of the barrier above the energy of the trapped
particle. Tunneling will therefore only be important for states close to the
top of the potential barrier. Low-lying states in traps where the magnetic
field magnitude rises for long distances will have very little tunneling. Even
for atom waveguide potentials as close as 1mm from the surface, tunneling
lifetimes of more than 1000 s have been estimated (Pfau and Mlynek, 1996;
Schmiedmayer, 1998).

A.6. Stray light scattering

Residual light can flip the atomic spin via optical pumping. For resonant light,
this happens at a rate of the order of G(Istray/Isat) where G is the linewidth of
the first strong electric dipole transition (typically, G/2p � 5MHz) and Isat the
saturation intensity (typically a few mW/cm2). It is highly desirable to perform
atom chip experiments ‘in the dark’: a shielding from any stray light at the level
10−6 Isat is required for manipulations on a scale of seconds. For more detailed
estimates, we refer to the review by Grimm et al. (2000) on optical traps.
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Table III
Loss mechanisms for the atom chip (overview)

Mechanism Scaling a Magnitude a Remedy

Spilling over deep trap potential

Background collisions b pbg 0.01 s−1 ultra-high vacuum

Majorana flips c w e−wL/w � 1 s−1 avoid B = 0

Near-field noise d Ts /rha 10 s−1 little metal

Current noise e SI (wL)/h2 � 1 s−1 low-noise drivers

2-body spin exchange f n 10−4 s−1 spin polarize

2-body spin relaxationg n 10−2–10−4 s−1

3-body collisions h n2 10−9–10−7 s−1

Tunneling 10−3 s−1 deep potential, wide
barriers

Stray light Istray keep in the dark

a The columns ‘Scaling’ and ‘Magnitude’ refer to loss rates per atom at typical atom chip traps:
density n = 1010cm−3, height h = 10mm, trap frequency w/2p = 100 kHz, Larmor frequency
wL /2p = 5MHz.
b Eq. (25).
c Flip rate (18) from trap ground state.
d Eq. (22). The exponent a = 1, 2, 3 for metal half-space, layer, and wire (see table 2). The estimate
10 s−1 is for a half-space.
e Eq. (24). SI (w)/SSN = 100.
f Experimental result for 87Rb (Myatt et al., 1997).
g Experimental result for Cs and 7Li, respectively (Söding et al., 1998; Gerton et al., 1999).
h Experimental results for 87Rb and 7Li, respectively (Burt et al., 1997; Söding et al., 1999; Gerton
et al., 1999).

To summarize, an overview of the previous loss mechanisms is given in
Table III. We expect that on the route towards mm-sized traps with high compres-
sion, inelastic collisions and magnetic field noise will dominate the trap loss.

B. Heating

In the treatment of loss mechanisms in the previous section, heating was
mentioned in relation to adiabatic compression where some atoms gain energies
larger than the trap depth. Here we discuss a different form of heating, in
which the atom exchanges energy with the environment. Such heating does not
necessarily cause the atom to be lost, but it is still very harmful as excitations of
vibrational degrees of freedom lead to an ill-defined quantum state of the system.
In the case of the atom system and the chip environment, the environment is
always hot compared to the system. Energy exchange thus increases both the
system’s mean energy and its energy spread. In the following, we first describe
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the influence of position and frequency noise using the harmonic oscillator
model, then turn to substrate and technical noise, and finally touch upon the
issue of heating due to light fields.

B.1. Harmonic oscillator model

Let us consider the trap potential to be a one-dimensional harmonic potential
with angular frequency w and with a ground-state size of a0 = (à/ (2Mw))1/2,
where M is the mass of the vibrating atom. Assume for simplicity that the atom
is initially prepared in the oscillator ground state |0〉. Heating can occur as a
result of a fluctuating trap either in frequency or position (see, for example,
Gehm et al., 1998; Turchette et al., 2000). These processes may be described by
transition rates to higher excited states of the oscillator. For example, fluctuations
in the trap position (amplitude noise) are equivalent to a force acting on the atom.
They drive the transition 0 → 1 between the ground and first excited vibrational
states, with an excitation rate given by (Gehm et al., 1998; Henkel et al., 1999)

G0→1 =
a20
2à2

SF (w) =
SF (w)
4àwM

(27)

that is determined by the noise spectrum of the force at the oscillator frequency
SF (w). The rate of energy transfer to the atom (‘heating rate’) is simply G0→1àw
or SF (w)/4M . Note that this estimate remains valid for an arbitrary initial state.
We may make contact with the work of Gehm et al. (1998) by noting that

fluctuations Dx of the trap center are equivalent to a force

F = Mw2Dx. (28)

In terms of the fluctuation spectrum of the trap center Sx(w), the excitation
rate (27) is thus given by

G0→1 =
Mw3

4à
Sx(w) =

w2

8
Sx/a0 (w), (29)

which is equivalent to the heating rate (12) of Gehm et al. (1998), given our
definition (20) of the noise spectrum.
Fluctuations of the trap frequency are described by the HamiltonianM x2wDw

and heat the atom by exciting the 0 → 2 transition. The corresponding transition
rate is (Gehm et al., 1998)

G0→2 = 1
4Sw(2w) (30)

and involves the frequency noise spectrum at twice the trap frequency. Using
the rates given by Gehm et al. (1998), one can show that the heating rate due
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to frequency fluctuations is equal to G0→2(4〈E〉 + àw), where the mean energy
〈E〉 = 1

2àw in the ground state.
In the following, we differentiate between thermal fluctuations and technical

ones. To get the total heating rate, one simply adds the force fluctuation spectra
SF (w) of all the relevant sources (e.g. electromagnetic noise from radio stations).

B.2. Thermal fluctuations

Magnetic fields generated by thermally excited currents in the metallic substrate
correspond to a force given by the gradient of the Zeeman interaction −m · B.
An explicit calculation of the magnetic gradient noise gives the following force
spectrum (Henkel and Wilkens, 1999; Henkel et al., 1999)

SF (w) =
m20kBTs
32pr

〈m2〉 + 〈m2‖〉
h3

, (31)

where m is the magnetic moment and m‖ its component parallel to the static
trapping field. The expression (31) applies to a planar metallic substrate (half-
space) and an oscillation perpendicular to its surface. Again, the noise spectrum
is actually frequency independent as long as h � d(w) where d(w) is the
skin depth (23). The average magnetic moment is taken in the trapped spin state
[see Henkel et al. (1999) for details]. We thus obtain the following estimate for
the excitation rate (27):

G0→1 � 0.7s−1
(m /mB)2(Ts /300K)

(M /amu)(w/2p 100 kHz)(r /rCu)(h/1mm)3
. (32)

Fig. 46 shows a plot of heating rates for varying substrates and trap heights
according to Eq. (32).

Fig. 46. Heating rate for a trapped spin above copper and glass substrates. Parameters: trap
frequency w/2p = 100 kHz, M = 40 amu, magnetic moment m = mB = 1 Bohr magneton, spin S =

1
2 .

The heating rate due to the magnetic black-body field (not shown) is about 10−39 s−1. For the glass
substrate, a dielectric constant with Re e = 5 and a resistivity r = 1011 W cm are taken. Reproduced
from Henkel et al. (1999), Appl. Phys. B 69 (1999) 379, Fig. 5, with permission. © Springer-Verlag.
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For lithium atoms, a typical trap frequency of 100 kHz and a height of
h = 10mm, we estimate a heating rate of 10−4 s−1. For time scales typical of
atom chip experiments (1−100ms), thermal fluctuations thus lead to tolerable
heating only for traps with h > 100 nm.

B.3. Technical noise

Heating due to technical noise may arise from fluctuations in the currents used in
the experiment. Noise in the chip wire currents and in the bias and compensation
fields, for example, randomly shifts the location of the trap center. Let us focus on
fluctuations in the chip wire current Iw. Neglecting finite size effects, the current
and the bias field Bb produce the magnetic trap at a height of h = m0Iw/2pBb
(Eq. 3). The conversion from the current noise spectrum SI (w) to the force
spectrum required for the heating rate (27) is simply

SF (w) =
(
m0Mw2

2pBb

)2
SI (w), (33)

and we end up with an excitation rate

G0→1 = 1.4 s
−1 (M /amu)(w /2p 100 kHz)3

SI (w)/SSN
(Bb/1G)2

. (34)

The reference SSN for the current noise is again the shot-noise level at Iw = 1A.
Note that this rate increases with the trap frequency: while a strong confinement
suppresses heating from thermal fields (Eq. 32), the inverse is true for trap
position fluctuations. This is because in a potential with a large spring constant,
position fluctuations translate into large forces (Eq. 28). Typical trap parameters
(w /2p = 100 kHz, Bb = 50G) lead for 7Li atoms to an excitation rate of
~4×10−3 s−1 × SI (w)/SSN. This estimate shows that even for very quiet currents
technical noise is probably the dominant source of heating on the atom chip.
The fluctuations of the trap center (location proportional to Iw /Bb) can be

reduced by correlating the currents of the bias field coils and the chip wire so that
they have the same fluctuations, up to shot noise. Heating due to fluctuations in
the trap frequency may then be relevant, as w is proportional to B2b/Iw (Eq. 6).
Let us again calculate an example. For a fixed ratio Iw /Bb (due to correlated
currents), we find for the relative frequency fluctuations

Dw
w
=
DI
Iw

(35)

and hence an excitation rate (30)

G0→2 � 10−7 s−1
(w/2p 100 kHz)2

(Iw /1A)2
SI (2w)
SSN

. (36)

Typical atom chip parameters (w /2p = 100 kHz, Iw = 1A) lead to G0→2 �
10−7 s−1 × SI (2w)/SSN, which is negligible when compared to the rate obtained
in Eq. (34).
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B.4. Light heating

Another source of heating are the external light fields with which the atoms are
manipulated and detected. Here the Lamb–Dicke parameter h is a convenient
tool, where

h =
2pa0
l

(37)

is the ratio between the ground-state size of the trap a0 and the wavelength of
the impinging wave. This becomes clear if we remember that the probability not
to be excited P0→0 is simply the well-known Debye–Waller factor

exp(−Dk2a20) � exp(−h2), (38)

where Dk ≈ k is the momentum loss of the impinging photon. Hence, if the
atoms are confined below the photon wavelength (the so-called Lamb-Dicke limit
h < 1), they will not be heated by light scattering. Loss via optically induced
spin flips is still relevant, however, as discussed in Sect. V.A.6 and reviewed by
Grimm et al. (2000).
In Table IV we give an overview of the heating mechanisms discussed above.

For microscopic traps, we expect noise from current fluctuations and (to a lesser
extent) from the thermal substrate to be the dominant origins of heating. Note the
scaling with the trap frequency: trap fluctuations due to technical noise become
more important for guides with strong confinement.
In this subsection, we have restricted ourselves to heating due to single-

atom effects. Collisions with background gas atoms also lead to heating and
rate estimates have been given by Bali et al. (1999). Finally, in an on-
chip Bose condensate, fluctuating forces may be expected to drive collective

Table IV
Heating mechanisms for the atom chip (overview)

Mechanism Scaling a Magnitudeb Remedy

Near-field noise b Ts/wrh3 10−4 s−1

Current noise c w3SI /B2b ~ wSI /h
2 1 s−1 correlate currents

Trap frequency noise d w2SI /I2w ~ SI /h4 10−5 s−1

Light scattering 1/wl2 reduce stray light

a The columns ‘Scaling’ and ‘Magnitude’ refer to transition rates from the ground state of a typical
atom chip trap: lithium atoms, height h = 10mm, trap frequency w/2p = 100 kHz. Harmonic
confinement is assumed throughout.
b Eq. (32), for a metal half-space.
c Eq. (34). Note the scalings w ~ B2b/Iw and h ~ Iw/Bb for trap frequency and height.
d Eq. (36).
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and quasiparticle excitations, leading to a depletion of the condensate ground
state (Henkel and Gardiner, 2002). This area deserves further study in the
near future.

C. Decoherence

We now turn to the destruction of quantum superpositions or interferences
due to the coupling of the atom cloud to the noisy chip environment. This is
an important issue when coherent manipulations like interferometry or qubit
processing are to succeed on the atom chip. With chip traps being ever closer to
the chip substrate, thermal and technical magnetic noise is expected to contribute
seriously to decoherence, as it does to loss and heating processes.
The theoretical framework for describing decoherence makes use of the

density matrix for the trapped atoms. Its diagonal elements give the occupation
probabilities, or populations, in some preferred basis, usually the stationary trap
states. Their evolution has been discussed in the previous subsections in terms
of simple rate equations and constants. Decoherence deals with the decay of
off-diagonal elements, or coherences, of the density matrix. Their magnitude
can be related to the fringe contrast one obtains in an interference experiment.
Magnetic fluctuations typically affect both populations and coherences: field
components perpendicular to the trapping fields redistribute the populations,
and parallel components suppress the coherences. The latter case illustrates
that decoherence can occur even without the exchange of energy, because
it suffices that some fluctuations randomize the relative phase in quantum
superposition states (Stern et al., 1990). Such fluctuations are sometimes called
‘phase noise’.
In this subsection we consider first the decoherence of internal atomic states

and then describe the impact of fluctuations on the center-of-mass. In the same
way as for the heating mechanisms, we leave aside the influence of collisions on
decoherence, nor do we consider decoherence in Bose–Einstein condensates.

C.1. Internal states

The spin states of the trapped atom are promising candidates for the implemen-
tation of qubits. Their coherence is reduced by transitions between spin states,
induced by collisions or noise. The corresponding rates are the same as for the
loss processes discussed in Sect. V.A.
In addition, pure phase noise occurs in the form of fluctuations in the

longitudinal magnetic fields (along the direction of the trapping field). These shift
the Larmor frequency in a random fashion and hence the relative phase between
spin states. The corresponding off-diagonal density matrix element (or fringe
contrast) is proportional to 〈exp(iDf)〉 where Df is the phase shift accumulated
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due to noise during the interaction time t. A ‘decoherence rate’ gdec can be
defined by

gdec =
〈Df2〉
2t

=
Sḟ(w → 0)

4
, (39)

where Sḟ(w) is the spectrum of the frequency fluctuations. Two spin states
|mF〉, |m′

F〉, for example, ‘see’ a frequency shift ḟ(t) = gmB(mF − m′
F )DB‖(t)/à,

that involves the differential magnetic moment and the component DB‖(t) of
the magnetic field noise parallel to the trap field. The spectrum Sḟ(w) is then
proportional to the spectrum of the magnetic field fluctuations.
Equation (39) is derived in a rotating frame where the phase shift has zero

mean and making the assumption that the spectral density Sḟ(w) is essentially
constant in the frequency range w � 1/t. The noise then has a correlation time
much shorter than the interaction time t. We consider, as usual in theory, that
Df is a random variable with Gaussian statistics, and get a fringe contrast

〈eiDf〉 = e−gdect (40)

that decays exponentially at the rate (39).
Let us give an estimate for the decoherence rate due to magnetic noise. If

DB(r, t) are the magnetic fluctuations at the trap center, the shift of the Larmor
frequency is given by

DwL(t) = −
〈i|m‖|i〉
à

DB‖(r, t). (41)

Here, the average magnetic moment is taken in the spin state |i〉 trapped in the
static trap field, thus picking the component DB‖ parallel to the trap field. The
noise spectrum of this field component, for thermal near field noise, is of the
same order of magnitude as for the perpendicular component (Henkel et al.,
1999) and depends only weakly on frequency. We thus get a decoherence rate
comparable to the loss rate (22), typically a few 1s−1. The same argument can be
put forward for fluctuations in the wire current and the bias field. Assuming a flat
current noise spectrum at low frequencies, we recover the estimate (24) for spin
flip loss (a few 1s−1). Therefore, keeping the atoms in the trap, and maintaining
the coherence of the spin states requires the same effort.
We finally note that near field magnetic noise also perturbs the coherence

between different hyperfine states that have been suggested as qubit carriers.
Although these states may have the same magnetic moment (up to a tiny
correction due to the nuclear spin), excluding pure phase noise, their coherence
is destroyed by transitions between hyperfine states. The corresponding loss rate
(relevant, e.g., for optical traps) has been computed by Henkel et al. (1999) and
is usually smaller than the spin flip rate.
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C.2. Motional decoherence

The decoherence of the center-of-mass motion of a quantum particle has been
put forward as an explanation for the classical appearance of macroscopic objects
since the work of Zeh (1970) and Zurek (1991) (see also the book by Giulini
et al., 1996). It has been shown that the density matrix of a free particle subject
to a random force field in the high-temperature limit evolves into a diagonal
matrix in the position basis (Zurek, 1991)

ø(z, z′, t) � ø(z, z′, 0) exp
[
−
(z − z′)2Dt

à2

]
. (42)

Here, the distance z − z′ denotes how ‘off-diagonal’ the element is, and D is the
momentum diffusion coefficient. The coherence length thus decreases like

xc =
à√
Dt
. (43)

At the same time, the momentum spread Dp � (2Dt)1/2 increases, so that the
relation Dpxc � à is maintained at all times. At long times, xc will be limited by
the thermal de Broglie wavelength at the equilibrium temperature. However, this
regime will not be reached on atom chips for typical experimental parameters.
For a particle trapped in a potential, the density matrix tends to a diagonal

matrix in the potential eigenstate basis if the timescale for decoherence is
large compared to the oscillation time 2p /w. This regime typically applies
to the oscillatory motion in atom chip waveguides. The regime in which the
two timescales are comparable has been discussed by Zurek et al. (1993) and
Paz et al. (1993); it leads to the ‘environment-induced selection’ of minimum
uncertainty states (coherent states for a harmonic oscillator).
In the following we discuss different decoherence mechanisms for a typical

separated path atom interferometer on the atom chip.

C.3. Longitudinal decoherence

We focus first on the quasi-free motion along the waveguide axis (the z-axis),
using the free particle model mentioned above. Decoherence arises again from
magnetic field fluctuations due to thermal or technical noise. The corresponding
random potential is given by (41):

V (r, t) = −〈i|m‖|i〉DB‖(r, t), (44)

where we retain explicitly the position dependence. Henkel and Pötting (2001)
have shown that for white noise, the density matrix in the position representation
behaves as

ø(z, z′, t) = ø(z, z′, 0) exp
(
−gdec(z − z′) t

)
, (45)
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where the decoherence rate gdec(s) depends on the spatial separation s = z − z′

between the two parts of the atomic wave function being observed:

gdec(s) =
1 − C(s)
2à2

SV (h; w → 0). (46)

Here, C(s) is the normalized spatial correlation function of the potential (equal
to unity for s = 0), and the noise spectrum SV (h; w → 0) characterizes the
strength of the magnetic noise at the waveguide center.
For an atom chip waveguide perturbed by magnetic near field noise, the

decoherence rate is of the order of

g =
〈m‖〉2S‖

B (h; w → 0)

2à2
(47)

and hence comparable to the spin flip rate (19, 22). Decoherence should thus
typically occur on a timescale of seconds. The correlation function C(s) is
well approximated by a Lorentzian, as shown by Henkel et al. (2000), and the
decoherence rate (46) can be written as

gdec(s) =
gs2

s2 + l2c
, (48)

where lc is the correlation length of the magnetic noise. This length can be
taken equal to the height h of the waveguide above the substrate (Henkel et al.,
2000). This is because each volume element in the metallic substrate generates a
magnetic noise field whose distance-dependence is that of a quasi-static field (a
1/r2 power law). Points at the same height h above the surface therefore see the
same field if their distance s is comparable to h. At distances s � h, the magnetic
noise originates from currents in uncorrelated substrate volume elements, and
therefore C(s) → 0. The corresponding saturation of the decoherence rate (48),
gdec(s � lc) → g , has also been noted, for example, by Cheng and Raymer
(1999).
Decoherence due to magnetic noise from technical sources will also happen

at a rate comparable to the corresponding spin flip rate, as estimated in Eq. (24).
The noise correlation length may be comparable to the trap height because the
relevant distances are below the photon wavelength at typical electromagnetic
noise frequencies, so that the fields produced by wire current fluctuations are
quasi-static, and the same argument applies. The noise correlation length of
sources like the external magnetic coils will, of course, be much larger because
these are far away from the waveguide. These rough estimates for the spatial
noise properties of currents merit further investigation, in particular at the shot-
noise level (Henkel et al., 2002).
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Fig. 47. Illustration of spatial decoherence in an atomic wave guide. The spatially averaged
coherence function G(s, t) =

∫
dz ø(z + s, z, t) is plotted vs. the separation s for a few times t. Space

is scaled to the field correlation length lc and time to the ‘scattering time’ 1/g ≡ 1/gdec(∞).
A Lorentzian correlation function for the perturbation is assumed. Reproduced from Henkel and
Pötting (2001), Appl. Phys. B 72 (2001) 73, Fig. 3, with permission. © Springer-Verlag.

Spatial decoherence as a function of time is illustrated in Fig. 47 where the
density matrix ø(z + s, z, t) averaged over z is plotted. Note that this quantity
will be directly proportional to the visibility of interference fringes when two
wavepackets with a path difference s interfere. One sees that for large splittings
s � lc, the coherence decays rapidly on the timescale 1/g given in Eq. (47). This
is because the parts of the split wavepacket are subject to essentially uncorrelated
noise. In a typical waveguide at height h = 10mm, fringe contrast is thus lost
after 0.1−1 s (the spin lifetime) for path differences s � 10mm. Increasing the
height to h = 100mm decreases g by at least one order of magnitude as shown by
Eq. (22). In addition, the correlation length grows to 100mm, and larger splittings
remain coherent. Alternatively, one can choose smaller splittings s � lc which
decohere more slowly because the interferometer arms see essentially the same
noise potential. Note, however, that the spin lifetime will always be the upper
limit to the coherence time of the cloud.
The previous theory allows to recover the decoherence model of Eq. (42) at

long times t > 1/g . In this limit, only separations s < lc have not yet decohered,
and we can make the expansion

gdec(s) ≈ g
s2

l2c
(49)

for the decoherence rate (48). From the density matrix (45), we can then read
off the momentum diffusion constant D = à2g/l2c .

C.4. Transverse decoherence

We finally discuss the decoherence of a spatially split wavepacket in an atom
chip interferometer, as described in Sect. II.A.9.
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C.4.1. Amplitude noise. The excitation of transverse motional states in each
arm suppresses the coherence of the superposition at the same rate as the heating
processes discussed in Sect. V.B (about 1 s−1). Note that due to the transverse
confinement, the relevant noise frequencies are shifted to higher values compared
to the longitudinal decoherence discussed before.

C.4.2. Phase noise. The coherence between the spatially separated interferom-
eter arms is suppressed in the same way as the longitudinal coherence discussed
in Sect. V.C.3. To show this, we use an argument based on phase noise, and
focus again on magnetic field fluctuations, either of thermal or technical origin.
Magnetic fluctuations affect both the bottom of the trap well and the transverse
trap frequency, but are only relevant when they differ in the spatially separated
arms. The well bottoms get differentially shifted from an inhomogeneous bias
field, e.g., while the trap frequency shifts due to changes in the field curvature.
We generalize formula (39) to a phase shift Df that is the accumulation of

energy-level differences DE(t) along the paths in the two arms. The decoherence
(or dephasing) rate is thus given by

gdec =
SDE(w → 0)

4à2
, (50)

where SDE(w → 0) is the spectral density of the energy difference, extrapolated
to zero frequency.
To make contact with the density matrix formulation of Eq. (45), we write

DE(t) = ER(t) − EL(t) where ER, L(t) are the energy shifts in the right and left
interferometer arms that are ‘seen’ by an atom travelling through the waveguide.
We find

〈DE(t)DE(t′)〉 = 〈ER(t)ER(t′)〉 + 〈EL(t)EL(t′)〉 − 〈ER(t)EL(t′)〉 − 〈EL(t)ER(t′)〉 ,
(51)

where the last two terms contain the correlation between the noise in both arms.
They may therefore be expressed through the normalized correlation function
CRL ≡ C(s) with s the separation between the left and right arms. The reasonable
assumption that both arms ‘see’ the same white noise spectrum, say SE(w),
yields

〈DE(t)DE(t′)〉 = [1 − C(s)] SE(w → 0) d(t − t′), (52)

gdec = gdec(s) =
1 − C(s)
2à2

SE(w → 0), (53)

where we recover the decoherence rate (46) obtained for the quasi-free
longitudinal motion. We also recover the trivial result that the contrast stays
constant if both interferometer arms are subject to the same noise amplitude
(perfect correlation C(s) = 1).
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The previous argument shows that transverse and longitudinal coherence are
affected in a similar way by magnetic noise. Again, near field noise is a serious
threat due to its short correlation length. Since the decoherence rate is so
small that gdec(∞) t � 1 for interaction times not longer than a few hundred
ms, the phase noise remains small even for widely separated arms subject to
decorrelated noise (separation larger than the guide height). This is a worst-
case estimate: a more careful approach would take into account the form of
the interferometer, where the arm separation is not constant. Current noise
should neither be underestimated. It is certainly possible to reduce dephasing
by feeding the same current through both left and right wire guides, as shown
by Eq. (53). But this does not seem to help at the shot-noise level because each
electron randomly follows one or the other wire. The wire current fluctuations
are thus uncorrelated, leading to a transverse decoherence rate comparable to
the longitudinal decoherence rate. Both rates are thus of the order of the flip
rate (24), typically a few s−1.
Let us estimate as another example the dephasing due to technical noise in

a magnetic field gradient. This may be introduced by an imperfect Helmholtz
configuration or coil misalignment. For small gradients b, we have

DE(t) = 〈m‖〉 s · b(t) (54)

where s is the spatial separation between the interferometer arms. To be precise,
b(t) = ∇B⊥(t) gives the gradient of the bias field component along the direction
of the (static) trapping field. Ignoring a possible anisotropy in the gradient noise,
we find the estimate

gdec(s) � 〈m‖〉2s2
4à2

Sb(w → 0), (55)

where Sb(w) is related to the power spectrum of the current difference in
the Helmholtz coils. We may take as the worst case completely uncorrelated
Helmholtz currents, and a magnetic gradient b � Bb /R where R is the size of
the Helmholtz coils. The dephasing rate is then of the order of

gdec(s) � 10−6 s−1
〈mb〉2
m2B

s2

R2
(Bb /G)2

(Ib /A)2
SI (w → 0)
SSN

, (56)

where Ib and Bb are the Helmholtz current and the bias field. The experimentally
reasonable parameters Ib = 1A, s = 100mm, R = 10 cm, Bb = 10G yield the
small value gdec(s) � 10−10 s−1 × SI (w → 0)/SSN. We note that the residual
gradient of imperfect Helmholtz coils is usually less than 0.1G/cm which is an
order of magnitude below the estimate Bb/R = 1G/cm taken here.
Finally, let us estimate the phase noise due to fluctuations in the spring constant

of the guide potential. Even in the adiabatic limit where the transitions between
transverse quantum states are suppressed (no heating), these fluctuations shift
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Table V
Decoherence mechanisms for atom chip interferometers (overview)

Mechanism Scaling Magnitude a Remedy

Substrate fields b

s � h Tss
2/rha + 2 � 10 s−1 little metal,

s � h Ts/rha 10 s−1 small splitting

Current noise c w3SI /B2b ~ wSI / h 1 s−1 correlate currents

Bias fluctuations d s2B2bSI /R
2I2b ~ s

2SI /R
4 10−8 s−1

Trap frequency noise e w2SI /I2w ~ SI /h4 10−5 s−1

a ‘Magnitude’ refers to the decoherence rate gdec(s) for a typical guided interferometer: lithium
atoms, height h = 10mm, separation s = 10mm, transverse guide frequency w/2p = 100 kHz. Along
the waveguide axis, the atomic motion is free.
b Exponent a = 1, 2, 3 for metal half-space, layer, and wire (Eq. 22 and table 2).
c Eq. (34).
d Eq. (56). The bias field scales as Bb ~ Ib/R where R is the size of the bias coils.
e Eq. (36).

the energy of the guided state. In the harmonic approximation, we have for the
ground state of the guide DE = 1

2àDw where Dw is the relative shift of the
vibration frequency. This gives a dephasing rate

gdec = 1
16Sw(w → 0). (57)

We have neglected noise correlations between the interferometer arms that
would reduce decoherence because of correlated phase shifts in both arms. The
rate (57) is of the same order as the heating rate (30, 36) due to frequency noise
(� 10−5 s−1). It thus appears that fluctuations of the trap frequency have a larger
impact than bias field gradients, but still they lead to negligible dephasing.
In Table V we give an overview of the different decoherence mechanisms

discussed in this subsection. For interferometers with large path differences
(compared to the waveguide height), we expect current shot noise and thermal
near field fluctuations to be the dominant sources of decoherence. They give
quite ‘rough’ potentials (small correlation length) and perturb both the quasi-
free motion along the waveguide axis and the relative phase between spatially
separated wavepackets in an interferometer. An increase in the trap frequency
does not help, rather the amount of metallic material in the vicinity of the guide
should be kept to a minimum.

VI. Vision and Outlook
Much has been achieved in the field of micro-optics with matter waves in the
last 10 years. We have seen a steady development from free-standing wires to
micron-size traps and guides, from trapping thermal atoms to the creation of
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BEC on an atom chip. Where to go from here? What can we expect from future
integrated matter wave devices? There are still many open questions before we
can assess the full promise of integrated microscopic atom optics.
In the following we try to pinpoint the relevant future developments and

directions. Some of them, like the study of the influence of the warm thermal
surface and the fundamental noise limits on lifetime, heating and coherence of
atoms, are already under way. Hopefully in a few years we will know how far
micromanipulation of atoms on chips can be pushed.

A. Integrating the Atom Chip

A.1. Chip fabrication technology

We will see continued development of atom chip fabrication techniques. De-
pending on how close to the surface one is able to place atoms before significant
decoherence occurs, the commonly used technology will be either state-of-the-art
nanofabrication with scale limits below 100 nm or thicker and larger wires built
by a combination of less demanding techniques. Another limitation would be
smoothness of fabrication: as fluctuations in wire widths would cause changing
current densities and consequently changing trap frequencies, potential ‘hills’
may appear which may be large enough to hinder the transport of a BEC or
control its phase evolution.
In the near future many advances in fabrication techniques are expected.

One of the first steps will be to build multilayer structures that will enable for
example crossing wires in order to realize more elaborate potentials and give
more freedom for atom manipulation.
Thin film magnetic materials should allow to build permanent magnetic

microscopic devices, which can be switched on and off for loading and
manipulation of atoms. Such structures would have the advantage that the
magnetic fields are much more stable, and consequently one can expect much
longer coherence times, when compared with current generated fields.

A.2. Integration with other techniques

With cold atoms trapped close to a surface, integration with many other
techniques of atom manipulation onto the atom chip is possible.
One of the first tasks will be to integrate present day atom chips with

existing micro-optics (see for example Birkl et al., 2001) and solid-state optics
(photonics), for atom manipulation and detection. We envision for example
microfabricated wave guides and/or microfabricated lenses on the atom chip for
bringing to and collecting light from atoms in the atom-optical circuits.
Light can also be used for trapping (Grimm et al., 2000). Having cold atoms

close to a surface will allow efficient transfer and precise loading of atoms into
light surface traps, which would be otherwise difficult because of their small
volume and inaccessible location. For example, an atom chip with integrated
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micro-optics will allow to load atoms into evanescent-wave guides and traps,
as proposed by Barnett et al. (2000). Such traps and guides would be a way
to circumvent the decoherence caused by Johnson noise in a warm conducting
surface (Sect. V).
With the standing wave created by reflecting light off the chip surface one

will be able to generate 2-dimensional traps with strong confinement in one
direction, resembling quantum wells, as demonstrated by Gauck et al. (1998).
Adding additional laser beams or additional electrodes on the surface restricts the
atomic motion further, yielding 2-dimensional devices as in quantum electronics
(Imry, 1987). Similarly one can build and load optical lattices close to the surface
where each site can be individually addressed by placing electrodes on the chip
next to each site.
In principle, many other quantum optical components can be integrated on the

atom chip. For example, high-Q cavities combined with microtraps will allow
atoms to be held inside the cavity to much better than the wavelength of light
providing a strong coupling between light and atoms. For recent experimental
work concerning the manipulation and detection of atoms in cavities, we refer
the reader to Berman (1994), Pinkse et al. (2000), Hood et al. (2000), Osnaghi
et al. (2001) and Guthöhrlein et al. (2001).
Regarding cavities one can think of examining a wide variety of technologies

ranging from standard high-Q cavities consisting of macroscopic mirrors to
optical fiber cavities (with Bragg reflectors or with mirrors on the ends); from
photonic band gap structures to microcavities like microspheres and microdiscs
fabricated from a suitable transparent material. One proposed implementation is
presented in Fig. 48 (Mabuchi et al., 2001).

Fig. 48. A proposed implementation of an integrated nanofabricated high-Q cavity from CalTech.
The cavity is made of a 2D photonic crystal utilizing holes with diameters of order 100 nm. A
Weinstein–Libbrecht-type Ioffe magnetic trap will hold the atom in the cavity. Courtesy H. Mabuchi.
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A.3. Atom detection

For future applications, it would be advantageous to have a state-selective single-
atom detector integrated on the atom chip. Such detectors could be based on
different methods. The most direct method would be to detect the fluorescent
light of the atom using surface-mounted micro-optics. More accurate non-
destructive methods could be based on measuring an optical phase shift induced
by an atom in a high-Q cavity.

A.3.1. Single-atom detection using near field radiation. To detect light scattered
from single atoms near a chip surface, the main challenge will be to minimize the
stray light scattered from the surface. One possible solution may be to collect a
large fraction of the light scattered by the atom using near field apertures and/or
confocal microscope techniques. An atom could also be used to couple light
between two wave guides, as used in some micro-optic detectors for molecules
and directional couplers in telecommunication.

A.3.2. Detecting single atoms by selective ionization. This may be achieved
using a multistep process up to a Rydberg state. The electron and the location
from where it came can then be detected with a simple electron microscope.
Using a dipole blockade mechanism as discussed by Lukin et al. (2001) one
should be able to implement an amplification mechanism, which will allow 100%
detection efficiency (Schmiedmayer et al., 2002).

A.3.3. Transmission of resonant light through a small cavity. Such a scheme
may be used to detect single atoms even for moderate Q values of the cavity.
The cavity could be created by two fibers with high reflectivity coatings at the
exit facets, or even by a DBR fiber cavity with a small gap for the cold atoms.
Fiber ends molded in a lens shape could considerably reduce the light losses due
to the gap. Having atoms localized in steep traps should allow a small gap that
would reduce the losses even further.

A.3.4. Transmission of light through a high-Q cavity. Here, the transmission
is modified by the presence of single atoms, and the light may be quite far
from atomic resonance and the atoms are still detected with high probability.
The basic mechanism of this detector is that atoms inside the cavity change the
dispersion for the light. The high Q value makes it possible to detect very small
modifications of the dispersion. In addition the cavities can be incorporated into
integrated optics interferometers to measure the phase shift introduced by the
presence of the atoms. Off resonant detection would allow for nondestructive
atom detection (see for example Domokos et al., 2000).
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B. Mesoscopic Physics

The potentials created on an atom chip are very similar in scale and confinement
to the potentials confining electrons in mesoscopic quantum electronics (Imry,
1987). There electrons move inside semiconductor structures, in our case
atoms move above surfaces in atom-optical circuits. In both cases they can be
manipulated using potentials in which at least one dimension is comparable to
the de Broglie wavelength of the guided, trapped particle. To find similarities
and differences between mesoscopic quantum electronics and mesoscopic atom
optics will probably become a very rich and fascinating research field.
Electrons in semiconductors interact strongly with the surrounding lattice.

It is therefore hard to maintain their phase coherence over long times and
distances. An atomic system on the contrary is well isolated. Furthermore, atoms
(especially in a BEC) can be prepared in such a way that the temperature is
extremely low with respect to the energy level spacing. The consequence is that
phase coherence is maintained over much longer times and distances. This might
enable us to explore new domains in mesoscopic physics, which are hard to reach
with electrons.

B.1. Matter wave optics in versatile potentials

A degenerate quantum gas in the atom chip will allow us to study matter wave
optics in confined systems with non-trivial geometries, such as splitters, loops,
interferometers, etc. One can think of building rings, quantum dots connected
by tunnel junctions or quantum point contacts (Thywissen et al., 1999b), or
even nearly arbitrary combinations thereof in matter wave quantum networks.
For many atomic situations the electronic counterparts can easily be identified.
Atom chips will allow to probe a wide parameter range of transverse ground
state widths, confinement and very large aspect ratios of 105 and more. Atomic
flow can be monitored by observing the expansion from an on-board reservoir
along the conduit. Further perturbations and corrugations can be added at any
stage to the potential by applying additional electric, magnetic or light fields to
modify the quantum wire or quantum well. In this manner we can also explore
how disorder in the guides may change the atomic behavior.
In the following, we give details regarding three exemplary matter wave

potentials on the atom chip.

B.2. Interferometers

In the near future it will be essential to develop and implement interferometers,
and to study through them the decoherence of internal states and external
motional states. Atom chip interferometers have been discussed in detail in
Sect. II.A.9. They can be built either in the spatial (Andersson et al., 2002)
or in the temporal domain (Hinds et al., 2001; Hänsel et al., 2001c). Integrated
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on an atom chip, they are very sensitive devices that may be used to measure
inertial forces or even to perform computation (Andersson and Barnett, 2000).
Coherence properties in more complicated networks can be studied by observing
interference and speckle patterns.
Interferometers can also serve as probes for the understanding of surface–

atom interactions, allowing for a quantitative test of the limits imposed on the
atom chip by the warm surface for both internal state and external (motional)
state coherence. Since many of the important parameters scale with the spin flip
life time in a trap (see Sect. V), a first important step would be to measure the
(BEC) lifetime in a microtrap as a function of distance to the surface. Aside from
heating and spin flips, the surface also induces ‘phase noise’. Interferometers will
be able to measure this subtle effect as a function of surface material type and
temperature as well as atom–surface distance and spatial spread of the atomic
superposition, through a reduction in the fringe visibility. Finally, by coupling
microtraps (atomic quantum dots) to one of the interferometer arms, similar to
the mesoscopic electron experiments (Buks et al., 1998), subtle interaction terms
may be investigated, e.g., 1/r second-order dipole interactions as discussed by
O’Dell et al. (2000).
Internal state superpositions of atoms close to surfaces can be studied using

internal state interferometers. Using Raman transitions or microwave transitions
we can create superpositions, observe their lifetime and put theoretical estimates
to the test.

B.3. Low-dimensional systems

Much is known about the behavior of fermions in low-dimensional strongly con-
fining systems (one- and two-dimensional systems) from mesoscopic quantum
electronic experiments. By designing low-dimensional experiments using atoms
(weakly interacting bosons or fermions) we expect to obtain further insight also
about electronic phenomena.
The role of interactions inside an atomic matter wave can range from minimal

in a very dilute system to dominating in a very dense system. Low-dimensional
systems are especially interesting in this context, since it is expected that the
interactions between the atoms will change for different potentials. The study of
the dependence of the interactions (scattering length) on the dimensionality and
the degree of confinement of the system (Olshanii, 1998; Görlitz et al., 2001;
Petrov et al., 2000) will benefit from the variety of potentials available on the
atom chip.

B.4. Non-linear phenomena

Another example of an interesting regime for the study of atom–atom interaction
or non-linearity are multi-well potentials. Again, as mentioned in the context
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of interferometers, the splitting of a cloud of atoms into these multi-sites can
be either temporal or spatial. Here calculations beyond mean field theory are
relevant, and new insight may be acquired. For example, one expects a crossover
from coherent splitting to number splitting in different potential configurations,
depending on the height of the potential barrier, the density, and the scattering
length (Menotti et al., 2001; Vardi and Anglin, 2001; Orzel et al., 2001). This
phase transition has already been observed experimentally by Greiner et al.
(2002).

B.5. Boundary between macroscopic and microscopic description

Let us end this subsection concerning mesoscopics by noting that the ability
to change the number of atoms in a system, or alternatively to address specific
atoms in an interacting ensemble, will allow us to probe the boundary between
the macroscopic and microscopic description. Starting from a large system,
we will try to gain more and more control over the system parameters,
imprinting quantum behavior onto the system. On the other hand we can
try and build larger and larger systems from single quantum objects (called
qubits in modern lingo), and keep individual control over the parameters.
Success in such an undertaking would bring us much closer to implementing
quantum information transfer and quantum information processing as discussed
below.

C. Quantum Information

The implementation of quantum information processing requires (DiVincenzo,
2000): (i) storage of the quantum information in a set of two-level systems
(qubits), (ii) the processing of this information using quantum gates, and
(iii) reading out the results. For a review of quantum computation we refer the
reader to Bouwmeester et al. (2000).
We believe that quantum optical schemes where the qubit is encoded in

neutral atoms can be implemented using atom optics on integrated atom
chips (Schmiedmayer et al., 2002). These promise to combine the outstanding
features of quantum optical proposals, in particular quantum control and
long decoherence times, with the technological capabilities of engineering
microstructures implying scalability, a feature usually associated with solid-state
proposals. Let us review some of the requirements:
– The qubit. Using neutral atoms, the qubit can be encoded in two internal, long-
lived states (e.g. two different hyperfine electronic ground states). Single-qubit
operations are induced as transitions between the hyperfine states of the atoms.
These are introduced by external fields, using RF pulses like in NMR or in
Ramsey–Bordé interferometers, Raman transitions or adiabatic passage.
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One method to realize a qubit is to write the qubits into single atoms, which
requires selective cooling and filling of atoms into the qubit sites. However,
recently it was proposed that single qubits can also be written into an ensemble
of atoms using ‘dipole blockade’ (Lukin et al., 2001). This may be simpler
as it avoids the need for single-atom loading of traps. As will be pointed out
below, the dipole blockade mechanism can also be used to manipulate the
qubit.

– Entangling qubits. The fundamental two-qubit quantum gate requires state-
selective interaction between two qubits, which is more delicate to implement.
A two-qubit quantum gate is a state-dependent operation such as a control
NOT gate:

|0〉|0〉 → |0〉|0〉,
|0〉|1〉 → |0〉|1〉,
|1〉|0〉 → |1〉|1〉,
|1〉|1〉 → |1〉|0〉. (58)

A good way to implement such a quantum gate is by state-selective
interactions, which can be switched on and off at will. This interaction can be
between the qubits themselves, or mediated by a ‘bus’. Neutral atoms naturally
interact with each other. To achieve different phase shifts for different qubit
states, either the interaction between the qubits has to be state selective, or it
has to be turned on conditioned on the qubit state. There are different ways
to implement quantum gates in atom optics: depending on the interaction, we
distinguish between (a) the generic interactions between the atoms, like the
Van der Waals interaction (Jaksch et al., 1999; Calarco et al., 2000; Briegel
et al., 2000) and (b) interactions which can be switched on and off, like
induced electric dipole–dipole interactions (Brennen et al., 1999; Brennen and
Deutsch, 2000), including highly excited Rydberg states (Jaksch et al., 2000;
Lukin et al., 2001).

– Dipole-blockade quantum gates between mesoscopic atom ensembles. Lukin
et al. (2001) devised a technique for the coherent manipulation of quan-
tum information stored in collective excitations of many-atom mesoscopic
ensembles by optically exciting the ensemble into states with a strong atom–
atom interaction. Under certain conditions the level shifts associated with
these interactions can be used to block the transitions into states with more
than a single excitation. The resulting dipole-blockade phenomenon closely
resembles similar mesoscopic effects in nanoscale solid-state devices. It
can take place in an ensemble with a size that can exceed many optical
wavelengths and can be used to perform quantum gate operations between
distant ensembles, each acting as a single qubit.

– Cavity QED. The 2-qubit processing operation may be realized through a
direct interaction (entanglement) between two atoms or through an inter-
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Fig. 49. A possible implementation of a neutral atom qubit processor on an atom chip which
includes a reservoir of cold atoms in a well-defined state (for example a BEC or a degenerate Fermi
gas). From there the atoms can be transported using guides or moving potentials to the processing
sites. Either single atoms or small ensembles of atoms are then loaded into the qubit traps. Each
qubit can be addressed either by bringing light to each individual site separately, or by illuminating
the whole processor and addressing the single qubits by shifting them in and out of resonance
using local electric or magnetic fields created by the nanostructures on the atom chip. We think that
electric fields are preferable, since magnetic fields might produce qubit-state dependent phase shifts,
which have to be corrected. A different method would also be to address the single sites using field
gradients like in NMR.

mediate ‘bus’. A light mode of a high-Q cavity can serve as such a ‘bus’
acting on an array of atoms trapped inside the cavity (Pellizzari et al., 1995).
Atoms in high-Q cavities which in turn are connected with fibers, can also
act as a converting device between ‘flying’ qubits (photons) which transverse
distances, and storage qubits (atoms). The same principle can be used for
entangling atoms in different cavities for a ‘distributed’ computation process
(van Enk et al., 1998, 1999). In all of the above, the atom chip promises to
enhance the feasibility of accurate atom–cavity systems.

– Input/Output. Even without high-Q cavities, an integrated atom chip, with
atoms trapped in well-controlled microtraps and with individual site light
elements, can probably provide input/output processes by making use of
techniques such as light scattering from trapped atomic ensembles (Duan
et al., 2001), slow light (Hau et al., 1999; Vitali et al., 2000), stopped light
(Phillips et al., 2001; Liu et al., 2001; Fleischhauer and Lukin, 2002) or
macroscopic spin states (Duan et al., 2000; Julsgaard et al., 2001).

Let us summarize the road map for quantum computation with the atom chip:
one would need to implement
(a) versatile traps to accurately control atoms up to the stage of entanglement;



VIII] MICROSCOPIC ATOM OPTICS: FROM WIRES TO ATOM CHIP 351

(b) controlled loading of single qubits (atoms or excitations) into these traps in
well-defined internal and external states;

(c) manipulation and detection of individual qubits;
(d) control over decoherence; and
(e) scalability to be able to achieve controlled quantum manipulation of a large

number of qubits.
A schematic view of a possible realization is shown in Fig. 49.

VII. Conclusion

Neutral-atom manipulation using integrated microdevices is a new and extremely
promising experimental approach. It combines the best of two worlds: the ability
to use cold atoms – a well-controllable quantum system, and the immense
technological capabilities of nanofabrication, micro-optics and microelectronics
to manipulate and detect the atoms.
In the future, a final integrated atom chip will have a reliable source

of cold atoms with an efficient loading mechanism, single-mode guides for
coherent transportation of atoms, nanoscale traps, movable potentials allowing
controlled collisions for the creation of entanglement between atoms, high-
resolution light fields for the manipulation of individual atoms, and internal
state-sensitive detection of atoms. All of these, including the bias fields and
possibly even the light sources and the read-out electronics, could be on-board a
self-contained chip. Such a robust and easy to use device would make possible
advances in many different fields of quantum physics: from applications such
as clocks, sensors and implementations of quantum information processing and
communication, to new experimental insight into fundamental questions relating
to decoherence, disorder, non-linearity, entanglement, and atom scattering in low-
dimensional physics.

VIII. Acknowledgement

Foremost we would like to thank all the members of the Innsbruck, now
Heidelberg, atom chip group for their enthusiasm and the enormous effort they
put into the experiments. We would like to thank our long-time theoretical
collaborators Peter Zoller, Tommaso Calarco and Robin Côté. The atom chips
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and Schmiedmayer, J. (2000). J. Mod. Opt. 47, 2789.

Buks, E., Schuster, R., Heiblum, M., Mahalu, D., and Umansky, V. (1998). Nature 391, 871.
Burke, J.P., Bohn, J.L., Esry, B.D., and Greene, C.H. (1997). Phys. Rev. A 55, R2511.
Burke Jr, J.P., Greene, C.H., and Esry, B.D. (1996). Phys. Rev. A 54, 3225.
Burt, E.A., Ghrist, R.W., Myatt, C.J., Holland, M.J., Cornell, E.A., and Wieman, C.E. (1997). Phys.
Rev. Lett. 79, 337.

Calarco, T., Hinds, E.A., Jaksch, D., Schmiedmayer, J., Cirac, J.I., and Zoller, P. (2000). Phys. Rev.
A 61, 022304.

Cassettari, D., Chenet, A., Denschlag, J., Schneider, S., and Schmiedmayer, J. (1998). In “Technical
Digest, EQEC 98, Glasgow,” September.

Cassettari, D., Chenet, A., Denschlag, J., Folman, R., Hessmo, B., Haase, A., Krüger, P., Schneider, S.,
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Guthöhrlein, G.R., Keller, M., Hayasaka, K., Lange, W., and Walther, H. (2001). Nature 414, 49.
Haase, A. (2000). Diploma Thesis. University of Innsbruck.
Haase, A., Cassettari, D., Hessmo, B., and Schmiedmayer, J. (2001). Phys. Rev. A 64, 043405.
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Söding, J., Guéry-Odelin, D., Desbiolles, P., Chevy, F., Inamori, H., and Dalibard, J. (1999). Appl.
Phys. B 69, 257.

Spreeuw, R.J.C., Voigt, D., Wolschrijn, B.T., and van Linden van den Heuvell, H.B. (2000). Phys.
Rev. A 61, 053604.

Stern, A. (1992). Phys. Rev. Lett. 68, 1022.
Stern, A., Aharonov, Y., and Imry, Y. (1990). Phys. Rev. A 41, 3436.
Sukumar, C.V., and Brink, D.M. (1997). Phys. Rev. A 56, 2451.
Thywissen, J.H., Olshanii, M., Zabow, G., Drndić, M., Johnson, K.S., Westervelt, R.M., and
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