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Interference with atomic and molecular matter waves is a rich branch of atomic physics and
quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory
fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful
art with many applications in modern science. In this review we first describe the basic tools
for coherent atom optics including diffraction by nanostructures and laser light, three-grating
interferometers, and double wells on AtomChips. Then we review scientific advances in a broad
range of fields that have resulted from the application of atom interferometers. These are grouped
in three categories: (1) fundamental quantum science, (2) precision metrology and (3) atomic
and molecular physics. Although some experiments with Bose Einstein condensates are included,
the focus of the review is on linear matter wave optics, i.e. phenomena where each single atom
interferes with itself.
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I. INTRODUCTION

Atom interferometry is the art of coherently manipu-
lating the translational motion of atoms (and molecules)
together with the scientific advances that result from ap-
plying this art. We begin by stressing that motion here
refers to center of mass displacements and that coherently
means with respect for (and often based on) the phase
of the de Broglie wave that represents this motion. The
most pervasive consequence of this coherence is interfer-
ence, and the most scientifically fruitful application of
this interference is in interferometers. In an interferom-
eter atom waves are deliberately offered the option of
traversing an apparatus via two or more alternate paths
and the resulting interference pattern is observed and ex-
ploited for scientific gain. Atom interferometers are now
valuable tools for studying fundamental quantum me-
chanical phenomena, probing atomic and material prop-
erties, and measuring inertial displacements.

In historical perspective, coherent atom optics is an
extension of techniques that were developed for manipu-
lating internal quantum states of atoms. Broadly speak-
ing, at the start of the 20th century atomic beams were
developed to isolate atoms from their environment; this
a requirement for maintaining quantum coherence of any
sort. Hanle (1924) studied coherent superpositions of
atomic internal states that lasted for tens of ns in atomic
vapors. But with atomic beams, Stern-Gerlach mag-
nets were used to select and preserve atoms in specific
quantum states for several ms. A big step forward was
the ability to change atoms’ internal quantum states us-
ing RF resonance as demonstrated by Rabi et al. (1938).

Subsequently, long-lived coherent superpositions of in-
ternal quantum states were intentionally created and de-
tected by Ramsey (1949). The generalization and fruitful
application of these techniques has created or advanced
a great many scientific and technical fields (e.g. precise
frequency standards, nuclear magnetic resonance spec-
troscopy, and quantum information gates).

Applying these ideas to translational motion required
the development of techniques to localize atoms and
transfer atoms coherently between two localities. In this
view, localities in position and momentum are just an-
other quantum mechanical degree of freedom analogous
to discrete internal quantum states. We discuss these
coherent atom optics techniques in Section II and the in-
terferometers tha result in Section III. Then we discuss
applications for atom interferometers in Sections IV, V,
and VI.

A. Interferometers for translational states

Atom Optics is so named because coherent manipula-
tion of atomic motion requires that the atoms be treated
as waves. Consequently, many techniques to control atom
waves borrow seminal ideas from light optics. To make
atom interferometers the following components of an op-
tical interferometer must be replicated:

1. State Selection to localize the initial state (gener-
ally in momentum space)

2. Coherent Splitting, typically using diffraction to
produce at least two localized maxima of the wave
function with a well-defined relative phase

3. Free Propagation so that interactions can be ap-
plied to one “arm”, i.e. one of the two localized
components of the wave function

4. Coherent Recombination so that phase information
gets converted back into state populations

5. Detection of a specific population, so the relative
phase of the wavefunction components can be de-
termined from interference fringes.

In hindsight, it is possible to reinterpret much of the
work on internal state resonance as an interferometer.
In particular, the separated oscillatory fields technique
Ramsey (1949) divided a single RF resonance region into
two zones that may be regarded as beam splitters. In
this experiment a Stern-Gerlach filter (the so-called A

magnet in Fig. 1) selects atoms in state |a〉. The first
resonance region (microwave cavity) then excites atoms
into a superposition of states |a〉 and |b〉. Atoms then
travel through a static (C) field in a coherent superposi-
tion whose relative phase oscillates freely until the atoms
enter the second microwave cavity. If radiation there is
in phase with the oscillating superposition, then atoms
complete the transition to state |b〉. But if the radiation
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FIG. 1 (a) Ramsey’s separated oscillatory fields experiment (Sullivan et al., 2001). (b) The same experiment depicted as an
interferometer for internal states. (c) Interference fringes from the NIST-F1 fountain clock demonstrate the precision obtained
with interference techniques. Fringes result from two separated oscillatory (microwave) fields exciting atoms in a fountain. On
the y-axis is reported the fraction of atoms in the excited state. Figures (a) and (c) are from (Sullivan et al., 2001).

is half a cycle out of phase then atoms are returned to
state |a〉. After the final state selector, the detected in-
tensity oscillates as a function of microwave frequency.
Overall, this method to manipulate the internal states
of an atom obviously maps directly onto the steps listed
above and can be regarded as the first atom interferome-
ter even though it is more frequently described in terms
of resonance of a Bloch vector of an atom moving classi-
cally.

B. Preparation. Manipulation. Detection.

Preparation of position states is hindered by the un-
certainty principle. As soon as free atoms are localized in
position, the attendant momentum uncertainty starts to
cause spatial delocalization. On the other hand, prepa-
ration in momentum space is free of such back action.
Therefore in coherent atom optics, especially with free
atoms, it is desirable to reduce the momentum and its
uncertainty for an ensemble of atoms. This is colloquially
referred to as slowing and cooling the atoms, respectively.

Momentum-state selection can be as simple as two col-
limating slits that select atoms with limited transverse
momentum. Alternatively, and preferably, atoms can be
concentrated in phase space by laser cooling and trap-
ping1. This is analogous to optical pumping for inter-

1 Original references for cooling and trapping include: supersonic
beams (Beijerinck and Verster, 1981; Campargue, 1984), opti-
cal molasses (Aspect et al., 1986; Chu et al., 1985), optical traps
(Ashkin, 1970; Chu et al., 1986a,b; Miller et al., 1993), magneto
optical traps (Raab et al., 1987), magnetic traps (Migdall et al.,
1985; Pritchard, 1983), atomic fountains (Kasevich et al., 1989),
velocity selective coherent population trapping (Aspect et al.,

nal states. In fact, cooling atoms (or ions) in a trap is
even more exactly analogous to optical pumping because
trapped atoms are in discrete translational states and can
ultimately be prepared in the single ground state.

The typical momentum uncertainty achieved with var-
ious methods is summarized in Table I. We note that
atom interferometers already work with atoms prepared
in beams, magneto-optical traps, or Bose Einstein con-
densates.

Manipulation. In most atom interferometers diffrac-
tion or the closely related Raman transitions “split”
atoms into a coherent superposition of momentum states
that typically differ in momentum by several photon mo-
menta (velocity differences of several cm/sec; e.g. the
recoil velocity for Na atoms due to absorbing a 590 nm
photon is vrec = ~k/mNa = 2.9 cm/sec and the veloc-
ity difference between 0th and 1st diffraction orders for
Na atoms transmitted through 100 nm period gratings
is h/(mNad) = 17 cm/sec). As time passes, each atom
evolves into a coherent superposition of spatial positions
located a distance ∆x = (p2 − p1)t/m apart. More-
over, if the initial preparation was restrictive enough,
then the components of each atoms’ wavefunction will be
distinctly separated in space. Creating such ‘separated
beams’ in an interferometer invites the experimenter to
deliberately apply different interactions - and hence dif-
ferent phase shifts - to each component of an atom’s wave
function.

Observing this phase difference requires recombining
the two components of the superposition. This is gen-

1988), sideband cooling (Neuhauser et al., 1978; Vuletic et al.,
1998; Wineland et al., 1978), cooling to the ground state of a
trap (Jessen et al., 1992; Monroe et al., 1995) and Bose Einstein
Condensation (Anderson et al., 1995).
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TABLE I Momentum uncertainty and temperature of atoms
prepared with different techniques. Typical ‘best case’ values
for sodium atoms are tabulated. The momentum uncertainty,
σp = (〈p2〉 − 〈p〉2)1/2 is given in units of 590 nm photon mo-
menta ~kph. Temperature is given by kBT = σ2

p/2m where
kB is the Boltzmann constant, and m is atomic mass.

Atomic Sample σp/~kph T/K

Thermal vapor 24,000 500

Effusive beam (longitudinal) 8,000 50

Supersonic beam (longitudinal) 3,000 8

Optical molasses or MOT 20 0.00025

Collimated beam (transverse) 1 10−6

Bose Einstein condensate 0.1 10−8

erally achieved by using diffraction or Raman processes
again to reverse the momenta of the two states so they
subsequently overlap. When this is done, interference
fringes are observed and the phase φint can be deter-
mined from their position.

Detection. Once information is transferred from the
phase of a superposition into the population of observ-
able states by using some kind of beam recombiner, then
a state-selective detector is used to measure the output
of an interferometer. In analogy with an optical Mach-
Zehnder interferometer, the fringes can be observed as
atom beam intensity that oscillates between two ‘output’
momentum states as a function of the interaction-induced
phase difference φint. Alternatively, fringes can be ob-
served directly in position space either by moiré-filtering
with a suitable mask or by directly imaging the atoms.
Bragg reflection of laser light can also be used to detect
fringes in atomic density. If the interferometer manip-
ulates both the internal and (separated) external states
of atoms, then fringes can be detected as oscillations in
population of the internal states after recombining the
atoms, as in Ramsey’s experiment.

Historically, alkali atoms were the first to be detected
efficiently, and this was achieved by counting the ions pro-
duced as the atoms ionized on a hot tungsten or rhenium
wire2. Metastable atoms can be detected directly with
multi-channel plates because of their stored internal en-
ergy. More universal neutral atom detectors use electron
bombardment or laser excitation to produce countable
ions. Fluorescence or absorption can also reveal fringes,
especially if a cycling transition is used with slow atoms.

2 Various atom detectors are discussed in (Campargue, 2000;
Ramsey, 1985; Scoles, 1988). For hot wire detectors see
(Delhuille et al., 2002b; Langmuir and Kingdon, 1925), for uni-
versal detectors see (DeKieviet et al., 2000b; Kuhnke et al.,
1994).

C. Scientific promise of atom interferometers

The light interferometers that were developed late in
the 19th century by Fizeau (1853) Michelson (1881),
Rayleigh (1881), and Fabry and Perot (1899) performed
many beautiful experiments and precise measurements
that have had a broad impact in physics. Recently,
the initial idea from de Broglie and Schrödinger that
propagating particles are waves has been combined
with technologies to produce interferometers for elec-
trons (Marton et al., 1953, 1954), neutrons (Rauch et al.,
1974), and now atoms. Even after the many ad-
vances made possible with earlier interferometers, won-
derful further scientific advances from atom interfer-
ometers have long been anticipated. In fact, the
concept of an atom interferometer was patented by
Altschuler and Franz (1973) and it has been extensively
discussed since. Early proposals for atom interferom-
eters were made by Chebotayev et al. (1985), Clauser
(1988, 1989), Keith et al. (1988), Martin et al. (1988),
Pritchard (1989), Bordé (1989) and Kasevich and Chu
(1991).

Even compared to electron- and neutron-wave physics,
interferometry with atoms offers advantages on several
fronts: a wider selection of atomic properties, larger cross
sections for scattering light, better characterized environ-
mental interactions, higher precision, better portability,
and far lower cost. Atomic properties like mass, magnetic
moment, and polarizability can be selected over ranges
of several orders of magnitude. For example, Cs has 137
times the mass and 89 times the electric polarizability
of H and is therefore better suited to measuring iner-
tial effects and detecting weak electric fields. 52Cr has
a magnetic moment of 6 µB while 4He has none. Alkali
atoms have 10−9 cm2 scattering cross sections for res-
onant light while electrons have a 10−25 cm2 cross sec-
tion for the same light (Compton / Thomson Scattering).
Hence, interactions of atoms and their environment can
be enlarged for better measurements or to study deco-
herence, or they can be suppressed to measure some-
thing else. Furthermore, atoms interact with surfaces
and other atomic gasses with potentials that are easily
studied by interferometry. Atoms can be manipulated
by lasers whose frequency and wavelength are measured
with accuracies of 10−15 and 10−11 respectively, offering
far better precision for measurements than the crystals or
structures used in other types of interferometer. Finally,
atom sources can be as simple as a heated container with
a small hole in the side or a pulse of laser light that hits a
pellet of the desired material. These sources are far less
expensive than nuclear reactors or even 200 keV electron
guns. In fact atom interferometers on atom chips can
potentially fit in a briefcase.

This richness and versatility is combined with the re-
wards (and challenges) that stem from the fact that
thermal atomic wavelengths are typically 30,000 times
smaller than wavelengths for visible light. The power
of atom interferometry is that we can measure phase
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shifts φint = ~
−1

∫

Udt due to very small potential ener-
gies. A simple calculation shows that 1000 m/s Na atoms
(Ekin ∼ 0.1 eV) acquire a phase shift of 1 rad for a po-
tential of only U = 6.6×10−12 eV in a 10 cm interaction
region. Such an applied potential corresponds to a refrac-
tive index of |n− 1| = 2.7× 10−11. Measuring the phase
shift φint to 10−3 rad corresponds to an energy resolu-
tion U/E ∼ 10−14, or a spectrometer with a linewidth
of 10 kHz and spectroscopic precision of Hz/

√
s. This

with a thermal atomic beam, cold atoms can increase
the sensitivity 1000-fold!

As we document in this review, atom interferometers
have already measured rotations, gravity, atomic polariz-
ability, the fine structure constant, and atom-surface in-
teractions better than previous methods. Yet atom inter-
ferometry itself is just over a decade old. The realization
of such interferometers started with diffraction gratings
that are summarized in Section II of this review. We cat-
alogue atom interferometer types and features in Section
III. We discuss fundamental issues such as decoherence
in Section IV. Precision measurements are described in
Section V, and atomic and molecular physics applications
are described in Section VI.

II. ATOM DIFFRACTION

Since half-silvered mirrors do not exist for atoms (solid
matter generally absorbs or scatters atoms), beamsplit-
ters for atom interferometers are often based on diffrac-
tion. Diffraction itself is an interesting interference effect
that has already been cleverly developed for use with
atoms. Hence we discuss atom diffraction now, and atom
interferometers next (in Section III).

Diffraction occurs when a wave interacts with anything
that locally shifts its phase or amplitude (e.g. due to ab-
sorption), and is a hallmark of wave propagation and
interference. It is generally treated as resulting from the
coherent superposition and interference of amplitudes for
wave propagation via different paths through the diffract-
ing region that have the same starting and ending points.

A diffraction grating is a periodic diffracting region.
Spatial modulation of the wave by the grating gener-
ates multiple momentum components for the scattered
waves. The fundamental relationship between the mo-
mentum transferred to waves in the nth component and
the grating period, d, is

δpn = n
h

d
= n~G (1)

where G = 2π/d is the reciprocal lattice vector of the
grating, and h is Planck’s constant. When the incom-
ing wave has a narrow transverse momentum distribution
centered around pbeam, this diffraction is generally ob-
served with respect to angle. Since the de Broglie wave-
length is λdB = h/pbeam, the resulting diffraction angles
(for nearly normal incidence) are

FIG. 2 Historic data showing diffraction of He atoms from a
LiF crystal surface (Estermann and Stern, 1930). The central
peak is due to He atom reflection. The side peaks are due to
first order diffraction of He atoms from the LiF crystal lattice.

θn ≈
δpn

pbeam
= n

λdB

d
(2)

To observe the interference a grating must be illumi-
nated at least in part coherently, i.e. the incident atom
waves must have a well-defined relative phase across sev-
eral grating periods. That means the transverse coher-
ence length must be larger than a few grating periods,
i.e. the transverse momentum distribution must be small
enough to resolve the diffraction orders. This is usually
accomplished by collimating the incident beam3.

A. Early diffraction experiments

The first examples of atom interference were diffrac-
tion experiments, and the earliest of these was by
Estermann and Stern (1930) just three years after the
electron diffraction experiment by Davisson and Germer
(1927). Figure 2 shows original data in which helium
atoms were reflected and diffracted from the surface of a
LiF crystal. The small lattice period of the crystal sur-
face (40 nm) gave large diffraction angles and allowed
relaxed collimation. This observation proved that com-
posite particles (atoms) propagate as waves, but this kind

3 The transverse coherence length is ℓtcoh ≈ λdB/ϑcoll, where λdB

is the de Broglie wavelength and ϑcoll is the (local) collimation
angle of the beam (the angle subtended by a collimating slit).
Since for thermal atomic beams λdB ∼ 10 pm a collimation of
ϑcoll < 10µrad is required for a 1 µm coherent illumination.



6

of reflection-type diffraction grating has not led to a beam
splitter suitable for atom interferometry. It did, however,
launch an active field of atom diffraction (both elastic and
inelastic) for studying surfaces.

B. Nanostructures

One of the first demonstrations of atom diffraction
from macroscopic objects was made by Leavitt and Bills
(1969) who observed Fresnel diffraction from a single 20
µm wide slit. With the advent of modern nano technol-
ogy it became possible to fabricate elaborate arrays of
holes and slots in a thin membrane that allow atoms
to pass through. These can have feature sizes of 50
nm or below – much smaller then typical transverse co-
herence in well-collimated atomic beams. Diffraction
from a nanofabricated structure – a transmission grat-
ing with 200 nm wide slits – was first observed by the
Pritchard group at MIT (Keith et al., 1988). This led to
many beautiful interference experiments with atoms and
molecules.

Nanotechnology has been used to make single slits,
double slits, diffraction gratings, zone plates, hologram
masks, mirrors, and phase shifting elements for atom
waves. The benefits of using mechanical structures for
atom optics include: feature sizes smaller than light
wavelengths, arbitrary patterns, rugged designs, and the
ability to diffract any atom and or molecule. The pri-
mary disadvantage is that atoms stick to (or bounce back
from) surfaces, so that most structures serve as absorp-
tive atom optics with a corresponding loss of transmitted
intensity.

1. Transmission gratings

After the demonstration of transmission gratings for
atom waves by Keith et al. (1988), these gratings have
seen numerous applications. A 100-nm period nanos-
tructure grating made at the MIT NanoStructures facil-
ity and atom diffraction data from this kind of grating is
shown in Figure 3. Material structures absorb atoms that
hit the grating bars but transmit atom waves through the
slots relatively unperturbed.

Classical wave optics recognizes two limiting cases,
near- and far-field, treated by the Fresnel and Fraunhoffer
approximations respectively. Both regimes have revealed
interesting effects and led to scientific advance. In the
near-field limit the curvature of the wave fronts must be
considered and the intensity pattern of the beam is char-
acterized by Fresnel diffraction. Edge diffraction and the
Talbot self-imaging of periodic structures are examples
of near-field atom optics. In the far-field limit, the inten-
sity pattern of the beam is characterized by Fraunhofer
diffraction in which the curvature of the atom wave fronts
is negligible and the diffraction orders can be resolved.
For a grating with open fraction w/d and a purely real

FIG. 3 Diffraction of He atoms transmitted through a nanos-
tructure grating. The average velocity and velocity spread
of the beam, the uniformity of the material grating, and the
strength of atom-surface van der Waals forces can all be de-
termined from these data (Grisenti et al., 1999). Figure cour-
tesy of J.P. Toennies, W. Schoellkopf and O. Kornilov. (In-
set) A 100 nm period grating for atom waves. The dark re-
gions are slots, and light regions are free-standing silicon ni-
tride bars. Figure courtesy of T.A. Savas and H.I. Smith at
the MIT NanoStructure laboratory (Savas et al., 1996, 1995;
Schattenburg et al., 1990).

and binary valued transmission function the probability
for a beam to be diffracted into the nth order is

Pn =
In
Iinc

=
(w

d

)2
(

sin(nwπ/d)

nwπ/d

)2

(3)

Modification of the diffraction patterns due to van
der Waals interaction with the grating bars was first
observed by Grisenti et al. (1999). This reduces the
flux in the zeroth order, increases flux in most of the
higher orders and prevents “missing orders” from occur-
ring (Cronin and Perreault, 2004). Random variations in
the grating bar period can be analyzed as Debye Waller
damping which preferentially suppresses higher diffrac-
tion orders (Grisenti et al., 2000b). Molecular size ef-
fects also modify the relative efficiencies as described by
(Grisenti et al., 2000a) and were used to estimate the size
of the very weakly bound He2 molecule (Luo et al., 1993;
Schllkopf and Toennies, 1994; Schollkopf and Toennies,
1996).

Molecules such as 4He2, 4He3 and other 4He clus-
ters, Na2, C60, C70, C60F48, and C44H30N4 have
been diffracted from similar gratings (Arndt et al.,
1999; Brezger et al., 2003, 2002; Bruhl et al., 2004;
Chapman et al., 1995a; Hackermuller et al., 2003b;
Nairz et al., 2003; Schollkopf and Toennies, 1996).
Scientific results in this area, such as the study of
decoherence and the formation rate of molecules in
beams will be discussed in Section IV.
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FIG. 4 (color online) Double-slit experiment with He*. (a)
Schematic. (b) Atom interference pattern with a = 1.05m and
d = 1.95m recorded with a pulsed source. (Kurtsiefer et al.,
1997).

2. Young’s experiment with atoms

Atomic diffraction from a double slit recapitulates the
seminal Young’s double slit experiment in which the
diffraction pattern is created by the interference of waves
traversing two cleanly separated paths. In that sense it
can be seen as a two path interferometer. The atomic
version by Carnal and Mlynek (1991) used a mechanical
structure with two 1-µm wide slits separated by 8 µm to
create the interference (Fig. 4). Diffraction from a sin-
gle 2-µm wide slit 62 cm from the double slit prepared
the atom waves (λdB= 100 pm) to have a transverse
coherence length larger than the double slit separation
(ℓtcoh = zλdB/2w = 15µm).

In the original experiment, a slit was translated in front
of the detector to observe the interference fringes. With
a beam brightness of B ≈ 1017 s−1cm−2 sr−1, the aver-
age count rate was about one atom per second. In a later
version (see Fig Fig. 4) they used a position sensitive de-
tector to record the whole pattern at once, giving a larger
counting rate. Time of flight resolution was added in or-
der to measure the Wigner function of the transmitted
atoms (Kurtsiefer et al., 1997).

A two slit experiment using cold Ne∗ atoms was pre-
sented by Shimizu et al. (1992). The atoms were dropped
from a magneto-optical trap one meter above a mechan-
ical mask with two slits separated by 6 µm. At the lo-
cation of the mask the atoms had a speed of 4.5 m/s
(λdB=5 nm) and a speed ratio of v/σv = 20. The mask
was equipped with an electrode so that deflection due to
an applied electric field gradient could be measured.

3. Charged-wire interferometer

A variation of the atomic Young’s experiment was built
by Nowak et al. (1998). A single wire put in a He* beam
produces a near-field diffraction pattern. Charging the
wire bends the atom trajectories passing around it in-
ward, increasing the interference (Fig. 5) analogous to
the charged-wire optical bi-prism interferometer for elec-
trons (Mollenstedt and Duker, 1955).

FIG. 5 Charged wire interferometer. (a) Schematic. (b)
Measured diffraction patterns with an uncharged wire. Fres-
nel fringes and the Poisson spot are visible. (c) Interference
fringes with different voltages applied to the electrodes. Fig-
ure from (Nowak et al., 1998).

4. Zone plates

Fresnel zone plates have focused atoms to spots smaller
than 2 microns (Figure 6). Zone plates behave locally
like a diffraction grating, therefore the focal length of a
zone plate is f = Rdmin/λdB where R is the radius of
outermost zone, and dmin is the period of the smallest
features. Focal lengths of f = 450 mm with R = 0.2 mm
(λdB = 200 pm) (Carnal et al., 1991) and f = 150 mm
with R = 0.3 mm (λdB =180 pm) (Doak et al., 1999)
have been demonstrated.

5. Atom holography

Atom holography with nanostructures can make the
far-field atom flux display arbitrary patterns. Adding
electrodes to a structure allows electric and magnetic
fields that cause adjustable phase shifts for the transmit-
ted atom waves. With this technique, Fujita et al. (1999,
2000a, 1996) demonstrated a two-state atom holographic
structure that produced images of the letters “φ” or “π”
as shown in Fig. 7. The different holographic diffraction
patterns are generated depending on the voltages applied
to each nano-scale aperture.
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FIG. 6 A zone plate for focusing atom beams. The plate (in-
set) has free-standing annular rings and radial support struts.
The data shows focused (+1) and defocused (-1) atom beam
components. Figure from (Doak et al., 1999).

FIG. 7 Atom holography. (a) Experimental setup for im-
age reconstruction of the hologram by an atom beam. (b) A
hologram designed by computer and realized with a SiN mem-
brane with square holes. (c) Far field diffraction pattern from
the hologram mask. (d,e) Two different diffraction patterns
obtained with a switchable hologram. (Fujita et al., 2000a,b;
Morinaga et al., 1996b).

C. Gratings of light

Laser spectroscopy initially dealt with the inter-
nal energy levels of atoms, and coherent phenomena
such as non-linear optics. Exploiting the momentum
transfer accompanying absorption or emission of light
was of little experimental concern until the observa-
tion of quantized deflection (=diffraction) in an atom
beam by Moskowitz et al. (1983) and its subsequent
application to a BEC by Ovchinnikov et al. (1999)4.
Many beautiful experiments with atoms diffracted from
standing waves of light have been accomplished since
these earliest milestones (e.g. (Delhuille et al., 2002a;
Giltner et al., 1995a,b; Koolen et al., 2002; Martin et al.,
1988; Rasel et al., 1995; Stenger et al., 1999; Torii et al.,
2000)). Now the interaction between light and atoms is
recognized as a rich resource for atom diffraction (and in-
terference) experiments; and a unified view of all possible
atom diffraction processes using light beams is presented
in (Bordé, 1997). Light waves can act as refractive, re-
flective and absorptive structures for matter waves, just
as glass interacts with light waves.

In an open two-level system the interaction between
an atom and the light field (with detuning ∆ = ωlaser −
ωatom) can be described with an effective optical potential
of the form (Oberthaler et al., 1996a)

U(x) =
~Ω2

1

4∆ + i2Γ
∝ I(x)

2∆ + iΓ
(4)

where the (on-resonant) Rabi frequency, Ω1 = dab ·
Eoptical/~, is given by the atomic transition dipole mo-
ment and the optical electric field, Γ is the atomic decay
rate and I(x) is the light intensity. The imaginary part of
the potential comes from the spontaneous scattering pro-
cesses, and the real part results from the ac Stark shift.
For a more detailed description we point to the vast liter-
ature on mechanical effects of light5. If the spontaneous
decay follows a path to a state which is not detected, the
imaginary part of the potential in Eq. (4) is equivalent
to absorption. Therefore on-resonant light can be used
to create absorptive structures. Light with large detun-
ing produces a nearly real potential and therefore acts
as pure phase object. Near-resonant light can have both
roles.

The spatial shape of the potential is given by the local
light intensity pattern, I(x), which can be shaped with all
the tricks of near and far field optics for light, including
holography. The simplest object is a periodic potential
created by two beams of light whose interference forms a

4 Of course, theoretical work on quantized momentum trans-
fer from light to matter dates back to Einstein (1917) and
Kapitza and Dirac (1933).

5 See for example, (Ashkin, 1970, 1980;
Dalibard and Cohen-Tannoudji, 1985;
Metcalf and van der Stratten, 1999).
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standing wave with reciprocal lattice vector

~G = ~k1 − ~k2. (5)

This is often called an optical lattice because it is a close
realization of the periodic potentials that electrons expe-
rience in solid state crystals. Thus, Bloch states can be
used to understand atom diffraction (Champenois et al.,
2001a; Letokhov et al., 1993). Additional points of view
that we shall discuss include the thin-hologram (Raman-
Nath approximation) (Meystre, 2001), two-photon Rabi
oscillations (Gupta et al., 2001b), and multi beam inter-
ference (dynamical diffraction theory).

We distinguish different regimes for atom ma-
nipulation, for example (1) thick vs. thin optical
lattices, (2) weakly perturbing vs. strongly chan-
neling lattices, (3) on- vs. off-resonant light, and
(4) static vs. time-dependent optical potentials.
These are discussed and interrelated in (Bernet et al.,
2000; Champenois et al., 2001a; Gupta et al., 2001b;
Keller et al., 1999; Morsch and Oberthaler, 2006;
Oberthaler et al., 1999, 1996a). We include a summary
chart (Figure 8) that catalogues different effects caused
by gratings of light.

Since light gratings can fill space, they can function
as either thin or thick optical elements. As in light op-
tics, for a thin optical element the extent of the grating
along the propagation direction has no influence on the
final diffraction (interference). But in a thick element the
full propagation of the wave throughout the diffracting
structure must be considered. In a grating, the relevant
scale is set by the grating period (d) and the atomic de
Broglie wavelength (λdB). If a grating is thicker than
d2/λdB (half the Talbot length) it is considered thick,
and the characteristics observed are Bragg scattering or
channeling, depending on the height of the potentials. If
the grating is thinner than d2/λdB, it can be analyzed in
the Raman-Nath limit, and it produces a symmetric dis-
tribution of intensity into each pair of diffraction orders
of opposite sign (±N). The thin vs. thick transition is
labeled “first focus line” in Figure 8.

The second distinction, mostly relevant for thick grat-
ings, has to do with the strength of the potential. One
must determine if the potential is only a perturbation,
or if the potential modulations are larger then the typ-
ical transverse energy scale of the atomic beam or the
characteristic energy scale of the grating,

EG = ~
2G2/(2m) = 4~ωrec, (6)

associated with one grating momentum unit ~G. (~ωrec

is an atoms ‘recoil energy’ due to absorbing (or emitting)
a photon.) For weak potentials, U ≪ EG, one observes
Bragg scattering. The dispersion relation looks like that
of a free particle with avoided crossings at the edges of the
zone boundaries. Strong potentials, with U ≫ EG, cause
channeling. The dispersion relations are nearly flat, and
atoms are tightly bound in the wells.

FIG. 8 (color online) Dimensionless parameter space for atom
diffraction. The vertical axis (optical potential in units of EG)
and horizontal axis (interaction time in units of ω−1

rec) are in-
dependent of atomic transition dipole moment and atomic
mass (see Equations 4 and 6). Under the ‘first focus line’
the RNA (Equation 8) is satisfied. ‘KD’ labels curves corre-
sponding to conditions that maximize Kapitza Dirac diffrac-
tion into orders 1 through 10 in order from bottom to top
(see Equation 7). ‘Bragg’ indicates curves that correspond
to conditions for complete (π-pulse) Bragg reflection into or-
ders 1 through 10 (see Equations 11 and 12). The vertical
dashed line indicates the Talbot time τT (discussed in Sec-
tion II.D.). For detuning of ∆ = 100Γ, the average num-
ber of spontaneously scattered photons per atom is greater
than one above the line marked Ns = 1. Experiment condi-
tions are shown as points. ◦: Kapitza-Dirac diffraction of an
atomic beam (Gould et al., 1986). •, △,▽: Bragg diffraction
of an atomic beam (Martin et al., 1988)(Giltner et al., 1995a)
(Koolen et al., 2002) respectively. �: Bragg diffraction of a
BEC (Kozuma et al., 1999a) (Bragg spectroscopy of a BEC
(Stenger et al., 1999) at τωrec = 80 would appear to the right
of the charted regions, near the first-order Bragg curve). ◮

Transition from Kapitza-Dirac diffraction to oscillation of a
BEC in a standing wave light pulse (Ovchinnikov et al., 1999).
�: Coherent channeling. Figure adapted from (Gupta et al.,
2001b) and (Keller et al., 1999).

1. Thin gratings: Kapitza-Dirac scattering

If atoms are exposed to a standing wave of off-resonant
light for a short time τ , the resulting optical potential
due to the standing wave acts as a thin phase grating
with period d = λph/2. Atom waves are diffracted by
this grating so that many momentum states (each dif-
fering by ~G) are populated as shown in Figure 9 (left
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FIG. 9 (color online) Comparison between diffraction from a
thick and a thin grating. (a) Kapitza Dirac (KD) diffraction,
discussed in Section II.C.1. (b) Bragg Diffraction, discussed
in Section II.C.3. The top row shows the essential difference:
thick vs. thin gratings. The bottom row shows data ob-
tained by the Pritchard group for KD and Bragg diffraction
(Gould et al., 1986; Martin et al., 1988).

column). This is known as Kapitza-Dirac scattering6,
and occurs in the Raman-Nath limit. The probability of
finding atoms in the N th diffracted state is given by the
Fourier transform of the imprinted phase shift, resulting
in the equation (Gupta et al., 2001b)

PK.D.thin
N = J2

N

(

Ω2
1τ

2∆

)

. (7)

Here JN is an Nth order Bessel function, and τ is the
duration that the optical intensity is experienced by the
atoms. As defined near Equation 4, Ω1 = dab·Eoptical/~.
Equation 7 is valid for normal incidence; Henkel et al.
(1994) considered all angles of incidence.

The Raman-Nath approximation (RNA) is valid pro-
vided the transverse motion of the atoms remains small.
Approximating the potential from a standing wave as
parabolic near a the minimum leads to the condition for

6 The original proposal by Kapitza and Dirac (1933) was for Bragg
reflection of electrons by a standing wave of light (Batelaan, 2000;
Freimund et al., 2001). However, “Kapitza-Dirac scattering” is
now most commonly used in the literature to describe diffraction
of atoms by a thin grating of light.

the RNA to be valid:

τ <
τosc

4
=

1

2
√

ΩREG/~
(8)

where ΩR =
√

|Ω1|2 + ∆2 is the generalized Rabi fre-
quency. If the interaction time is longer than this,
Eq. 7 is no longer valid, and population transfers to
states with the largest momenta (large N) are suppressed
(Keller et al., 1999; Meystre, 2001; Moharam and Young,
1978; Raman and Nath, 1935; Wilkens et al., 1991).

Early attempts to observe the Kapitza-Dirac (KD) ef-
fect with electrons were controversial [see discussion in
(Batelaan, 2000; Freimund et al., 2001)], and attempts
with atoms were unable to eliminate the effects of spon-
taneous emission (Arimondo et al., 1979)7. The first ob-
servation of Kapitza-Dirac scattering by Moskowitz et al.
(1983), and Gould et al. (1986) was therefore a break-
through: it showed a symmetric double maximum and
also revealed that momentum transfer was quantized in
units of 2 ~klight thereby indicating a coherent process.
Moreover, these experiments showed that quantized mo-
mentum transfer (i.e. coherent diffraction) is possible
even if the interaction time, τ , is much larger than the
atoms’ radiative lifetime, provided that the radiation is
detuned from resonance.

With a BEC Kapitza-Dirac scattering was first ob-
served at NIST by Ovchinnikov et al. (1999) and has
subsequently become an everyday tool for manipulat-
ing BEC’s. More recently, a series of light pulses sep-
arated in time [by about one eighth of the Talbot time
(τT = 2d2m/h)] have been used to diffract atoms with
high efficiency into only the±1 orders (Wang et al., 2005;
Wu et al., 2005b).

2. Diffraction with on-resonant light

Tuning the light frequency of a standing light wave to
resonance with an atomic transition (∆ = 0) can make an
‘absorptive’ grating with light. This is possible when the
spontaneous decay of the excited state proceeds mainly
to an internal state which is not detected. (If the ex-
cited state decays back to the ground state, this process
produces decoherence and diffusion in momentum space.)
For a thin standing wave the atomic transmission is given
by

T (x) = exp
[

−κ
2

[1 + cos(Gx)]
]

, (9)

where the absorption depth for atoms passing through
the antinodes is κ. For sufficiently large absorption only

7 In fact, T. Oka made a wager with DEP that the MIT exper-
iments would continue to show a maximum at zero deflection,
rather than revealing two maxima displaced from the center as
predicted.



11

FIG. 10 (color online) Diffraction from a measurement-
induced grating. (a) Schematic of two on-resonant standing
waves of light. The first causes atom diffraction. The second
can be translated to analyze near-field atomic flux. (b) Peri-
odic structure in the transmitted atomic beam. (c) Far-field
atom diffraction from a measurement induced grating. Figure
from (Abfalterer et al., 1997).

atoms passing near the intensity nodes survive in their
original state and the atom density evolves into a comb
of narrow peaks. Since the ‘absorption’ involves spon-
taneous emission such light structures have been called
measurement induced gratings. As with all thin gratings,
the diffraction pattern is then given by the scaled Fourier
transform of the transmission function.

Such gratings have been used for a series of
near-field (atom lithography; Talbot effect) and far-
field (diffraction; interferometry) experiments, and
an example is shown in Figure 10 (Abfalterer et al.,
1997; Johnson et al., 1996, 1998; Jurgens et al., 2004;
Rasel et al., 1995). These experiments demonstrate that
transmission of atoms through the nodes of the ‘absorp-
tive’ light masks is a coherent process.

3. Thick gratings: Bragg diffraction

If the standing wave is thick, one must consider the full
propagation of the matter wave inside the periodic poten-
tial. The physics is characterized by multi wave (beam)
interference. For two limiting cases one can regain simple
models. For weak potentials, Bragg scattering; and for
strong potentials, coherent channeling.

When an atomic matter wave impinges on a thick but
weak light crystal, diffraction occurs only at specific an-
gles, the Bragg angles θB defined by the Bragg condition

NλdB = λph sin(θB). (10)

Bragg scattering, as shown in Figures 9 (right col-
umn) transfers atoms with momentum −px into a state
with a single new momentum, px = −px + ~G. Mo-
mentum states in this case are defined in the frame
of the standing wave in direct analogy to electron or
neutron scattering from perfect crystals. Bragg scat-
tering was first observed at MIT (Martin et al., 1988)

FIG. 11 Energy states on the energy-momentum dispersion
curve associated with Bragg diffraction. Versions of this clas-
sic figure are found in (Bordé, 1997; Giltner et al., 1995a;
Gupta et al., 2001b; Kozuma et al., 1999a; Martin et al.,
1988).

and first observed with atoms in a Bose Einstein con-
densate at NIST (Kozuma et al., 1999a). Higher or-
der Bragg pulses transfer multiples of N~G of mo-
mentum, and this has been demonstrated up to 8th
order with an atomic beam (Giltner et al., 1995b;
Koolen et al., 2002). Reviews of Bragg scattering ap-
pear in (Bernet et al., 2000; Durr and Rempe, 1999;
Gupta et al., 2001b; Oberthaler et al., 1999).

The Bragg scattering process can be understood in
terms of absorption followed by stimulated emission (Fig-
ure 11). Viewing Bragg scattering as a two-photon tran-
sition from the initial ground state with momentum to a
final ground state (with new momentum) illuminates the
close connection with a Raman transitions (Gupta et al.,
2001b).

As a result of the coherently driven 2-photon transi-
tion, the probability amplitude oscillates between the two
momentum states |g,−~kph〉 and |g,+~kph〉 in a manner
analogous to the Rabi oscillation of atomic population
between two resonantly coupled states. The probability
for Bragg scattering of atoms from off-resonant standing
waves of light is

PBragg
N=1 (τ) = sin2

(

Ω2
1τ

4∆

)

(11)

The oscillation between the two Bragg-coupled states
(N = 0 and N = 1) is known as the Pendellösung
and has been observed for atoms (Koolen et al., 2002;
Martin et al., 1988; Oberthaler et al., 1999), neutrons
(Shull, 1968), electrons, and x-rays. The nice feature
with atoms is that the strength of the grating can be
controlled by the intensity of the light.

The probability for Nth order Bragg diffraction is

PBragg
N (τ) = sin2

(

Ω2N
1 τ

24N−3[(N − 1)!]2∆NωN−1
rec

)

(12)
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where we have assumed ∆≫ N2ωrec.
Bragg diffraction of atoms from off-resonant standing

waves of light is often used for studying a BEC’s velocity
distribution because the velocity selectivity of the Bragg
condition (Blakie and Ballagh, 2000; Carusotto et al.,
2000; Kozuma et al., 1999a; Stamper-Kurn et al., 2001;
Stenger et al., 1999). σv is improved by increasing the
duration of interaction with the grating, as can be de-
duced from the time-energy uncertainty principle, σv =
2/(τG) 8. For first-order Bragg diffraction, the minimum
interaction time required to suppress all but one diffrac-
tion order is τ > h/EG ≈ 10µsec; so to observe Bragg
scattering with a 1000 m/s Na atom beam typically re-
quires standing waves nearly 1-cm thick. However, τ can
be substantially increased with cold atoms, and σv less
than 1/30 of the recoil velocity has been observed. For
higher order Bragg diffraction the interaction time must
be τ ≫ π/(2(N − 1)ωrec).

Bragg scattering can be described as a multi beam in-
terference as treated in the dynamical diffraction the-
ory developed for neutron scattering. Inside the crystal
one has two waves, the refracted incident ‘forward’ wave
(kF ) and the diffracted ‘Bragg’ wave (kB). These form a
standing atomic wave field, and the diffraction condition
(kB − kF = G) implies that the standing atomic wave has
the same periodicity as the standing light wave. At any
location inside the lattice, the exact location of atomic
probability density depends on kF , kB and the phase dif-
ference between these two waves.

For incidence exactly on the Bragg condition the nodal
planes of the two wave fields are parallel to the lattice
planes. The eigen-states of the atomic wave field in the
light crystal are the two Bloch states, one exhibiting max-
imal (Ψmax) the other minimal (Ψmin) interaction.

Ψmax =
1

2

[

ei G
2 x + e−i G

2 x
]

= cos

(

G

2
x

)

,

Ψmin =
1

2

[

ei G
2 x − e−i G

2 x
]

= i sin

(

G

2
x

)

. (13)

For Ψmax the antinodes of the atomic wave field coin-
cide with the planes of maximal light intensity, for Ψmin

the antinodes of atomic wave fields are at the nodes of
the standing light wave. These states are very closely
related to the coupled and non-coupled states in ve-
locity selective coherent population trapping (VSCPT)
(Aspect et al., 1988).

The total wave function is that superposition of Ψmax

and Ψmin which satisfies the initial boundary condition.
The incoming wave is projected onto the two Bloch states

8 States lie on the energy-momentum dispersion curve (E =
p2/2m) with quantized momentum. Finite interaction times (τ)
allow states to be populated with a range of energy σE = pσv =
2~/τ . For an Nth-order Bragg process, the state momentum is
centered around p = N~G. Hence, σv = 2/(NτG).

FIG. 12 (color online) Bragg diffraction of atoms from reso-
nant standing waves of light. (a) Atoms entering the light
crystal at the Bragg angle are less likely to emit a spon-
taneous photon and therefore survive the on resonant light
field (Anomalous transmission). (b) A resonant standing
wave inside a light crystal serves to measure the atom wave
fields inside the crystal. For on- resonance light crystals
one observes the minimal coupled Bloch state. Figure from
(Oberthaler et al., 1996a).

which propagate through the crystal accumulating a rel-
ative phase shift. At the exit, the final populations in the
two beams is determined by interference and depends on
this relative phase (following equation 11).

Bragg scattering can also be observed with absorptive,
on-resonant light structures (Oberthaler et al., 1996a)
and combinations of both on and off-resonant light fields
(Keller et al., 1997). One remarkable phenomenon is
that the total number of atoms transmitted through a
weak on-resonant standing light wave increases if the
incident angle fulfills the Bragg condition, as shown in
Fig. 12. This observation is similar to what Borrmann
(1941) discovered for x rays and called anomalous trans-
mission.

The observed anomalous transmission effect can easily
be understood in the framework of the two beam approx-
imation outlined above. The rate of de-population of the
atomic state is proportional to the light intensity seen by
the atoms and therefore to the overlap between the atom
wave field with the standing light field. The minimally
coupled state Ψmin will propagate much further into the
crystal than Ψmax. At the exit phase the propagating
wave field will be nearly pure Ψmin. As a consequence
one sees two output beams of (nearly) equal intensity.

Inserting an absorptive mask (Abfalterer et al., 1997)
inside the light crystal allows one to observe the standing
matter wave pattern inside the crystal (Oberthaler et al.,
1999, 1996a) and verify the relative positions between the
light field and Ψmin.

Indeed, tailored complex potentials for atoms can be
made out of combinations of bi-chromatic standing waves
(Keller et al., 1997). For example, a superposition of
standing waves (one on- and one off-resonance) with a
phase shift ∆ϕ = ±π/2 results in a combined poten-
tial of U(x) = U0e

±iGx which, in contrast to a standing
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FIG. 13 Observation of long lasting Bloch oscillations in Cs
where the interaction was switched off by tuning the scat-
tering length close to zero by applying a magnetic field to
17.12 G (adapted from Gustavsson et al. (2007).

wave, has only one momentum component. Such a po-
tential can therefore only diffract in one direction. As
this predicts, various diffraction orders can be suppressed
by adjusting the phase difference between the absorptive
and the refractive grating. The lack of symmetry is re-
ferred to as a violation of Friedel’s law. The asymmetry
in the observed patterns can also be understood as an
interference effect between diffraction at refractive and
absorptive “subcrystals” spatially displaced with respect
to each other (Keller et al., 1997).

4. Bloch Oscillations

Bloch oscillations were predicted by Bloch (1929) and
Zener (1934) as an interference phenomenon in connec-
tion with the electronic transport in crystal lattices, but
can in general also be observed in any system where accel-
erated matter waves move through a periodic potential.
In a simple physical picture the Bloch oscillations can be
viewed as repeated Bragg reflection from an accelerating
grating. To observe high contrast Bloch oscillations it is
desirable to prepare the initial sample well localized in
momentum space, with a width of the momentum distri-
bution much smaller than the Brilloiuin-Zone. Therefore
a BEC would be an ideal starting condition.

The first to observe Bloch oscillations with atomic mat-
ter waves was Dahan et al. (1996), who studied the mo-
tion of thermal atoms in an accelerated lattice. Since
then, because optical lattices can be precisely controlled,
Bloch oscillations have been used for precision measure-
ments of quantities related to acceleration such as g or
~/matom.

In a real experiments atom-atom interactions damp the
Bloch oscillations (by de-phasing). Roati et al. (2004)
showed that Bloch oscillations survive much longer for
non-interacting Fermions (40K) when compared with
Bosons (87Rb), and very long lasting Bloch oscillations
were observed both for weakly interacting Bosons (88Sr)
by Ferrari et al. (2006) and especially where the inter-
action was switched of by tuning with a Feshbach res-
onance in 133Cs by Gustavsson et al. (2007) or 39K by
Fattori et al. (2007).

FIG. 14 (color online) Coherent channeling of atoms through
a strong light crystal. (a) When the light crystal turns on
abruptly (see inset) many transverse momentum-states are
populated, and a large number of outgoing diffraction orders
are observed. (b) atoms entering the light crystal slowly (adi-
abatically) only occupy the lowest energy states, hence only
one or two output beams are observed, as in Bragg scattering.
Figure from (Keller et al., 1999).

5. Coherent channeling

When the lattice potential becomes higher then EG

(Eq. 6) the atoms can be localized in the standing light
wave. Atoms impinging on such a strong light crystal
are then guided in the troughs through the crystal, and
can interfere afterwards. Such guiding is called channel-
ing. Channeling of electron beams (Joy et al., 1982) and
ion beams (Feldman, 1982) in material crystals is related
to channeling of atoms in optical lattices (Horne et al.,
1999; Keller et al., 1999; Salomon et al., 1987). If the
process is coherent one can observe a diffraction pattern
reminiscent of the KD diffraction from a thin grating.
See Figure 14.

D. The Talbot effect

We now turn from far-field atom diffraction to the
near-field region, where a host of different interference
effects occur. The well-known optical self imaging of a
grating discovered by Talbot in 1832 is most important.
It has many applications in image processing and synthe-
sis, photo-lithography, optical testing and optical metrol-
ogy (Patorski, 1989), and has proven to be a powerful tool
for interference experiments with matter waves.

Plane waves incident on a periodic structure form
a “self-image” of the structure at the Talbot distance
LT = 2d2/λdB and again at integer multiples of the
Talbot length. At half the Talbot distance a similar
self-image is formed but displaced by half a period. At
certain intermediate distances higher-order Talbot im-
ages are formed. These have a spatial frequency that is
higher than the original grating by a ratio of small in-
tegers. The position and contrast of the sub-period im-
ages are determined by Fresnel diffraction as discussed
in (Clauser and Li, 1994b; Clauser and Reinisch, 1992;
Patorski, 1989). The replica (Fresnel) images and higher-
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FIG. 15 The Talbot effect. (a) Schematic of a pulsed source
and a time-resolved detector used to observe near-field diffrac-
tion from a nano-grating with 0.6 µm diameter windows
spaced with a period of 6.55 µm. (b) Higher order Talbot
fringes. The spatial atom distribution vs. de Broglie wave-
length is plotted. The arrows indicate locations at which
Talbot fringes of the mth order are observed. Figure from
(Nowak et al., 1997).

order (Fourier) images are used in a Talbot-Lau interfer-
ometer (Brezger et al., 2003).

Talbot fringes were first observed with an atom
beam and nanostructure gratings by (Chapman et al.,
1995c; Clauser and Li, 1994b; Schmiedmayer et al.,
1993) and higher-order Talbot fringes were observed
by Nowak et al. (1997) (see Figure 15). The Talbot
effect has also been studied with on-resonant light
(Turlapov et al., 2003, 2005), and Talbot revivals have
been observed in the time-evolution of atom clouds
after pulses of off-resonant standing waves of light
(Cahn et al., 1997; Deng et al., 1999). The Talbot time
is τT = LT /v = 2d2m/h.

Rohwedder (2001) proposed detecting the Talbot effect
for atoms trapped in wave guides, and Ruostekoski et al.
(2001) discussed the formation of vortices in BEC as a
result of the Talbot effect. Proposals to use the Tal-
bot effect to study the state of electromagnetic fields
in cavities are discussed in (Rohwedder et al., 1999;
Rohwedder and Santos, 2000). Using the Talbot ef-
fect with multiple phase gratings has been proposed
as a way to make more efficient beam splitters for
atom waves (Rohwedder, 1999, 2000), and this is related

to the standing-wave light-pulse sequence described in
(Wu et al., 2005b).

The Lau effect is a closely related phenomenon in
which incoherent light incident on two gratings causes
fringes on a distant screen, provided that the gratings
are separated by a half-integer multiple of the Talbot
length. References for the Lau effect in light optics
include (Bartelt and Jahns, 1979; Jahns and Lohmann,
1979; Lau, 1948; Patorski, 1989). In essence, for the Lau
effect the first grating serves as an array of mutually in-
coherent sources and Fresnel diffraction from the second
grating makes the pattern on the screen. This forms the
basis for Talbot-Lau interferometers which we discuss in
Section III.

An especially promising application of Talbot (or Lau)
imaging with atoms is atom lithography as demon-
strated in (McClelland et al., 2004; Timp et al., 1992)
and many others. For reviews see (Bell et al., 1999;
Meschede and Metcalf, 2003). It is possible to write
smaller gratings and features using the reduced period
intermediate images discussed above. Similar Fourier
images have been used for x-rays to write half-period
gratings (Flanders et al., 1979) and to construct x-ray
interferometers (David et al., 2002; Momose et al., 2003;
Weitkamp et al., 2005). Grating self-images may also be
used in quantum optics experiments to produce a peri-
odic atom density in an optical resonator.

E. Time-dependent diffraction

Many new interference effects arise when the diffract-
ing structures are modulated in time, a situation we have
not considered previously (except for revivals at the Tal-
bot time after pulsed gratings). These new effects arise
with matter waves because the vacuum is dispersive for
atoms - particles with shorter wavelength (higher energy)
propagate faster than those with longer wavelengths. In
contrast, for light in vacuum all wavelengths propagate
at a constant speed, c.

Two matter wave components interfering at (x, t) may
have propagated from the same x′ but originated from
there atdifferent times t′ (if they have different velocity)!
Time-dependent boundary conditions can cause matter
wave diffraction phenomena in time that are similar to
spatial diffraction phenomena arising from spatially de-
pendent boundary conditions. This was first discussed in
a seminal paper by Moshinsky (1952), who argued that
after opening a shutter one should observe a rise in the
matter wave intensity with Fresnel fringes in time, simi-
lar to the diffraction of an edge in space. He called this
very general phenomena diffraction in time. Similarly,
the opening and closing of a shutter results in a single slit
diffraction in time; two successive openings makes a dou-
ble slit; and a periodic change in the opening of the slit
produces a diffraction pattern in time. With diffraction
in time, new frequency (energy) components are created
(as in an acoustic-optic modulator), resulting in com-
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FIG. 16 Diffraction in time from a pulsed mirror. (a)
schematic of the experiment, showing atom trajectories and
a trace indicating when the mirror was switched on. The first
pulse acts as a slit in time, the second pulse is modulated so
that it acts as a grating in time. (b) the diffraction pattern
in time manifests as different energy components in the re-
sulting atomic beam. Figure from (Steane et al., 1995) and
(Cohen-Tannoudji, 1998)

ponents with new momenta. In analogy to diffraction in
space one finds that diffraction in time has both near-field
and far-field regimes. One also observes Raman Nath and
Bragg regimes, depending on the duration of the inter-
action and the amount of energy (frequency) transfer.

1. Vibrating mirrors

Even though diffraction in time of matter waves was
predicted in 1952 the first experimental demonstrations
had to wait until the late 1980’s. The experimental diffi-
culty in seeing diffraction in time is that the time scale for
switching has to be faster than the inverse frequency (en-
ergy) width of the incident matter wave. This condition
is the time equivalent to coherent illumination of adja-
cent slits in spatial diffraction. The first (explicit) exper-
iments demonstrating diffraction in time used ultra-cold
neutrons reflecting from vibrating mirrors (Felber et al.,
1990; Hamilton et al., 1987; Hils et al., 1998). The side-
bands of the momentum components were observed.

A study of diffraction and interference in time was
performed by the group of J. Dalibard at the ENS in
Paris using ultra cold atoms reflecting from a switch-
able atom mirror (Arndt et al., 1996; Steane et al., 1995;
Szriftgiser et al., 1996). Ultra cold Cs atoms (T ∼
3.6µK) released from an optical molasses fell 3 mm, and
were reflected from an evanescent atom mirror. By puls-
ing the evanescent light field one can switch the mirror
on and off, creating time-dependent apertures that are
diffractive structures in the spirit of Moshinsky (1952).

Even for these ultra cold Cs atoms the energy spread
(7MHz) is too large for the time-diffraction experiment,
so a very narrow energy window was selected by two (0.4
ms) temporal slits. The first slit was positioned 26 ms
after the atoms were released. Switching on the mirror a
second time, 52 ms later, selected a very narrow energy
slice in the same way as a two-slit collimation selects a
very narrow transverse velocity slice. The arrival time of

FIG. 17 (color online) Frequency shifter for matter waves.
(a) A time-modulated light crystal causes diffraction in time
and space. (b) Rocking curves show how the Bragg angle for
frequency-shifted matter waves is controlled by the grating
modulation frequency. (c) Beating between frequency shifted
and unshifted matter waves. Figure from (Bernet et al.,
1996).

the atoms at the final “screen” was measured by fluores-
cence induced by a light sheet.

If the second slit is very narrow (< 10µs) one observes
single slit diffraction in time; if the mirror is pulsed on
twice within the coherence time of the atomic ensemble
one observes double slit interference in time; and many
pulses lead to a time-dependent flux analogous to a grat-
ing diffraction pattern as shown in Fig. 16. From the
measurement of the arrival times the energy distribution
can be reconstructed. Similar diffraction in time is ob-
served when a BEC is reflected from a vibrating mirror
(Colombe et al., 2005).

Because the interaction time between the atoms and
the mirror potential (< 1µs) was always much smaller
then the modulation time scale (> 10µs), these experi-
ments are in the ‘thin grating’ (Raman-Nath) regime for
diffraction in time.

2. Oscillating potentials

When matter waves traverse a time-modulated poten-
tial one can observe coherent exchange of energy be-
tween the oscillating field and the matter wave. This
was demonstrated in a neutron interference experiment
(Summhammer et al., 1995) where a oscillating magnetic
potential was applied to one path of an neutron interfer-
ometer. Coherent exchange of up to 5 quanta ~ω was
observed in the interference patterns, even though the
transit time through the oscillating potential was much
shorter then the oscillation period.
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3. Modulated light crystals

The time equivalent of spatial Bragg scattering can be
reached if the interaction time between the atoms and the
potential is long enough to accommodate many cycles of
modulation. When a light crystal is modulated much
faster then the transit time, momentum is transferred in
reciprocal lattice vector units and energy in sidebands at
the modulation frequency. This leads to Bragg diffraction
at two new incident angles.

Bragg scattering in time can be understood as a transi-
tion between two energy and momentum states. The in-
tensity modulation frequency of the standing light wave
compensates the detuning of the Bragg angle. The fre-
quency of the de Broglie wave diffracted at the new Bragg
angles is shifted by ±~ωmod (Bernet et al., 2000, 1996).
Thus, an amplitude modulated light crystal realizes a co-
herent frequency shifter for a continuous atomic beam. It
acts on matter waves just as an acousto-optic modulator
acts on photons, shifting the frequency (kinetic energy)
and requiring an accompanying momentum (direction)
change.

In a complementary point of view, the new Bragg an-
gles can be understood from looking at the light crys-
tal itself. The modulation creates side bands ±ωmod on
the laser light, creating moving crystals which come from
the interference between the carrier and the side bands.
Bragg diffraction from the moving crystals occurs where
the Bragg condition is fulfilled in the frame co-moving
with the crystal, resulting in diffraction of the incident
beam to new incident angles.

The coherent frequency shift of the Bragg diffracted
atoms can be measured by interferometric superposition
with the transmitted beam. Directly behind the light
crystal the two outgoing beams form an atomic interfer-
ence pattern which can be probed by a thin absorptive
light grating (Abfalterer et al., 1997). Since the energy
of the diffracted atoms is shifted by ~ωmod, the atomic
interference pattern continuously moves; this results in
a temporally oscillating atomic transmission through the
absorption grating (Figure 17).

Starting from this basic principle of frequency shifting
by diffraction from a time dependent light crystal many
other time dependent interference phenomena were stud-
ied for matter waves (Bernet et al., 2000, 1999). Light
crystals are an ideal tool for these experiments since one
can easily tailor potentials by controlling the laser inten-
sity and frequency and create more complex structures by
superimposing different independently controlled crys-
tals.

For example using light from two different lasers one
can create two coinciding light crystals generated in front
of the retro-reflection mirror. Varying detuning and
phase between the two modulated crystals creates situa-
tions where diffraction is completely suppressed, or where
either the frequency unshifted or the frequency shifted or-
der is suppressed (Figure 18). The combination of real
and imaginary potentials can produce a driving potential

FIG. 18 (color online) Diffraction in time from two super-
imposed light crystals with a controlled relative phase be-
tween the modulations. (Left) two off-resonant light crys-
tals are superimposed. The relative phase of the temporal
modulation controls the intensity of the frequency shifted and
unshifted Bragg beams. (Right) an on-resonant and an off-
resonant crystal are superimposed. The relative phase con-
trols the time-dependent potential. For phase π/3 (3π/2)
only frequency up (down) shifted components appear. Figure
adapted from (Bernet et al., 2000).

of the form U(t) ∼ e±iωmt which contains only positive
(negative) frequency components respectively. Such a
modulation can only drive transitions up in energy (or
down in energy).

F. Summary of diffractive Atom Optics

To summarize, in Section II we have reviewed atom
diffraction from nanostructures and standing waves of
light. Nanostructures absorb atoms, can be arbitrarily
patterned (e.g. holograms) and affect all atomic and
molecular species. Standing waves of light can make a
phase (or in some cases amplitude) grating for a partic-
ular species of atom in a specific state. Light gratings
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FIG. 19 Summary of diffraction efficiency for atoms |ψn/ψinc|
from different types of gratings. (a) nanostructures with
C3=0, (b) standing waves of on-resonant light, (c) Kapitza-
Dirac (thin phase mask) diffraction, and (d) Bragg (thick
crystal) scattering. The x-axis is proportional to the intensity
of the light (or the open fraction in the case of nanostruc-
tures).

can be thick or thin, strong or weak, and can be modu-
lated in time. Both types of grating exhibit interesting
and useful interference phenomena in both the near- and
far-field regimes.

Figure 19 summarizes the diffraction efficiency of four
different kinds of time-independent gratings: two absorb-
ing gratings (nanostructures and standing waves of on-
resonant light) and two non-dissipative gratings (in the
Kapitza Dirac and Bragg regimes). These efficiencies are
given by equations 3, 7, 11, and the Fourier transform of
equation 9.

Figure 20 summarizes thick and thin gratings in space
and also in time with Ewald constructions to denote
energy and momentum of the diffracted and incident
atom waves. The diffraction from (modulated) stand-
ing waves of light can also be summarized with the
Bloch band spectroscopy picture (Bernet et al., 2000;
Champenois et al., 2001a).

G. Other coherent beam splitters

Whereas diffraction occurs without changing the
atom’s internal state, another important class of beam
splitters uses laser or RF transitions that do change
atoms’ internal state while transferring momentum.
Therefore, as they coherently split atomic wavefunc-
tions into two (or more) pieces they cause entangle-
ment between the atomic motion and the internal atomic
states. Important examples that are used in atom in-
terferometry include absorption from a traveling wave
of light (Bordé, 1989, 1997), stimulated Raman tran-
sitions (Kasevich and Chu, 1992) and longitudinal RF
spectroscopy (Gupta et al., 2001a). The longitudinal
Stern-Gerlach effect (Miniatura et al., 1991) also causes
entanglement between motion and internal degrees of

FIG. 20 Momentum diagrams for cases: (A) A thick grating,
(B) A thin grating, (C) A thick pulsed grating (D) A thick
harmonically modulated grating. (Bernet et al., 2000)

freedom. We discuss these in Section III on atom in-
terferometry.

Potentials that change slowly from single-well to
double-well represent an entirely new type of beam split-
ter that is more applicable to trapped atoms than prop-
agating light. We discuss this tool for coherent splitting
of atomic wavefunctions in the next chapter on atom in-
terferometry.

Reflecting surfaces have been used for atom diffrac-
tion, atom holography, and Young’s experiment with
atoms, e.g. in (Christ et al., 1994; Cognet et al., 1998;
Deutschmann et al., 1993; Gunther et al., 2007, 2005;
Landragin et al., 1997), (Shimizu and Fujita, 2002b),
and (Esteve et al., 2004; Kohno et al., 2003) respec-
tively. The challenges of using reflection-type atom
optical elements include low reflection probability and
strict requirements for flatness in order to maintain
atom wave coherence. Still, the toolkit for coher-
ent atom optics is expanded by quantum reflection,
in which atom waves reflect from an attractive poten-
tial, and also classical reflection, where repulsive po-
tentials can be formed with evanescent waves of blue-
detuned light or engineered magnetic domains. Vari-
ous mirrors for atoms are discussed in (Berkhout et al.,
1989; Fortagh and Zimmermann, 2007; Henkel et al.,
1999, 1997; Kaiser et al., 1996; Marani et al., 2000;
Savalli et al., 2002; Shimizu, 2001; Shimizu and Fujita,
2002a).

Other beam splitters for atoms that have not been used
for atom interferometer experiments will not be discussed
in this review.
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III. ATOM INTERFEROMETERS

A. Introduction

The essential features of interferometers generally and
atom interferometers in particular are listed in the suc-
cession of five steps: (1) prepare the initial state, (2) split
the wavefunctions coherently into two or more states, (3)
apply interactions that affect the two states differentially,
generally due to their different spatial location, (4) re-
combine these components coherently, and (5) measure
the phase shift of the detected fringes.

The crucial step of coherent splitting (2) has been
accomplished for atom interferometers using diffraction
gratings, photon absorption, Raman transitions, longitu-
dinal Stern-Gerlach magnets and even physical separa-
tion of confined atoms into multiple potential wells. In
the following we discuss these in the framework of the in-
terferometers in which they have been used, and review
the basic features of several atom interferometer designs.
A detailed survey of scientific research with atom inter-
ferometers is given in Sections IV, V, and VI.

1. General design considerations

When designing and building interferometers for atoms
and molecules, one must consider key differences between
matter waves and light. The dispersion relations, the
coherence properties, and our tools to control the two
different kinds of waves are among the important differ-
ences.

One striking difference is the fact that matter waves
have short deBroglie wavelengths (∼ 10 pm for thermal
atoms up to ∼1 µm for ultracold atoms), and also have
a very short coherence lengths (∼100 pm for thermal
atomic beams, and seldom larger then 10 µm even for
atom lasers or BEC). This requires that the period and
the position of the interference fringes must be indepen-
dent of the deBroglie wavelength of the incident atoms.
In optical parlance this is a property of white light inter-
ferometers.

A second concern with atoms is that they interact
strongly with each other. Therefore matter waves are
often non-linear, especially in the cases where the atoms
have significant density as in a BEC or atom laser.

A third distinguishing feature is that atoms can be
trapped. This leads to a new class of interferometers for
confined particles, which we discuss at the end of this
section.

2. White light interferometetry

The challenge of building a white light interferometer
for matter waves is most frequently met by the 3-grating
Mach Zehnder (MZ) layout. This design was used for the
first electron interferometer by Marton (1952), for the

first neutron interferometer by Rauch et al. (1974), and
for the first atom interferometer that spatially separated
the atoms by Keith et al. (1991). In the MZ interferom-
eter the role of splitter and recombiner is taken up by
diffraction gratings. They also serve as the mirrors that
redirect the separating atom waves back together. (In
fact simple mirrors won’t serve this purpose if the initial
state is not extremely well collimated. This is because
most interferometer designs that employ simple mirrors
will make the fringe phase strongly correlated with in-
put beam position and direction.) In their seminal work
Simpson (1954), noted that with grating interferometers

“the fringe spacing is independent of wave-
length. This ‘achromatic’ behavior ... ap-
pears to be characteristic of instruments us-
ing diffraction for beam splitting.”

The explanation is that diffraction separates the split
states by the lattice momentum, then reverses this mo-
mentum difference prior to recombination. Faster atoms
will diffract to smaller angles resulting in less transverse
separation downstream, but will produce the same size
fringes upon recombining with their smaller angle due
to their shorter deBroglie wavelength. For three evenly
spaced gratings, the fringe phase is independent of inci-
dent wavelength, surprisingly also for asymmetric designs
(such as that in Fig 21a) where the intensity maximum
for different wavelengths occurs at different distances off
the symmetry axis9.

Many diffraction-based interferometers produce fringes
when illuminated with a source whose transverse coher-
ence length is much less than its (large) physical width, or
even the grating period. Under such conditions, the dif-
ferent diffraction orders will not be separated, so diffrac-
tion can not be resolved and it will not be possible to
exploit the physical separation of the orders to apply an
interaction to only one arm of the interferometer. Nev-
ertheless, high contrast fringes will still be formed.

The three grating interferometer produces a “position
echo” as discussed by Chebotayev et al. (1985). Starting
at one grating opening, one arm evolves laterally with
~G more momentum for some time, the momenta are
reversed, and the other arm evolves with the same mo-
mentum excess for the same time, coming back together
with the first arm at the third grating. If the gratings are
registered, an atom’s trapezoidal pattern starts at a slot
on the first grating, is centered on either a middle grating
slot or groove, and recombines in a slot at the third grat-
ing. Not surprisingly, spin-echo and time-domain echo
techniques (discussed below) also offer possibilities for
building an interferometer that works even with a distri-
bution of incident transverse atomic momenta.

9 The popular design in figure 21a is asymmetric because the in-
terferometer paths are formed by diffraction orders 0 and 1 for
one arm, and orders 1 and -1 for the other.
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3. Types and categories

A large variety of atom and molecule interferometers
have been built since 1991. The list includes Mach Zehn-
der, Talbot-Lau, optical Ramsey-Bordé, and stimulated
Raman transition interferometers. There are also lon-
gitudinal Stern-Gerlach, and longitudinal RF interfer-
ometers. Some of these designs render the interference
fringes in position space. Some make fringes in mo-
mentum space. Still other designs make the interference
fringes observable in internal atomic state space. We
catalogue these interferometers briefly here according to
their features before examining each in detail throughout
this section.

(1) Internal state changing interferometers are one
broad category. Some beam splitters change atom’s in-
ternal state, analogous to a polarizing beam splitter in
light optics. For example, stimulated Raman transitions
entangle internal and external states, so atoms in these
interferometers are in a coherent superposition of differ-
ent momentum-spin states.

(2) Time-domain vs. space-domain is another broad
classification. In a time-domain interferometer, the beam
splitters are pulsed so all atoms interact with the gratings
and the interferometer for the same amount of time.

(3) Near-field (Talbot-Lau) and far-field (Mach Zehn-
der) classification applies for diffractive atom optics.
Near-field interferometers can function even with poorly
collimated beams, but the gratings in a Talbot-Lau inter-
ferometer (TLI) must be separated by precise multiples
of the Talbot length or else the contrast degrades.

(4) Separated path interferometers are a special cate-
gory of atom interferometer in which the paths are suf-
ficiently physically separated that the atom wave in one
arm can be isolated and interactions can be applied to it
alone.

(5) Freely propagating cold atoms can have long times
of flight (∼ 1

2 s) as compared to thermal atom beams
(∼1 ms). Confinement in a trap during the interferom-
eter operation may soon provide even longer interaction
times.

(6) Atom traps and waveguides offer the possibility
of making confined atom interferometers in which the
atom wavefunction is split in coordinate space rather
than momentum space. Obviously, the ability to interfere
atoms that are spatially confined in all three dimensions
throughout the entire interferometer is unprecedented
with light interferometers. Additional topologies such
as multiple wells and ring-traps and longitudinal waveg-
uides have also been demonstrated.

Finally, we distinguish single atom interferometers
from those in which (non-linear) collective effects are sig-
nificant. Even atoms launched from a magneto-optical
trap are generally not dense enough to cause signifi-
cant non-linear effects. Interferometry with Bose Ein-
stein condensates (or atom lasers) on the other hand can
show non-linear atom optics phenomena that range in
significance from phase noise to number squeezing and

Josephson oscillations.
These distinctions – (1) internal state changing vs.

state preserving, (2) space-domain vs. time-domain, (3)
near-field vs. far-field, (4) separated path or not, (5)
trapped or freely propagating, (6) dilute vs. dense – all
affect the performance of atom interferometers for differ-
ent applications.

Since the first atom interferometers were built for Na,
Cs, Mg, and He* in 1991, others have been made for Ar*,
Ca, H* He, K, Li, Ne*, Rb atoms, and He2, Li2, Na2, I2,
C60, C70, C60F48, and C44H30N4 molecules. Interferom-
eters starting with trapped atoms have been made for
Ca, Cs, He*, Mg, Na, and Rb and interferometers using
Bose-Einstein condensates have been demonstrated with
Na and Rb, . These lists are still growing.

B. Three-Grating Interferometers

The simplest white light interferometer is a Mach
Zehnder interferometer built from 3 diffraction gratings.
The first grating acting as a beam splitter, the second
as a redirector, reversing the (transverse) momentum of
the beam, and the 3rd as a recombiner or analyzer of the
interference.

1. Mechanical gratings

The first 3-grating Mach-Zehnder interferometer for
atoms was built by Keith et al. (1991) using three 0.4-
µm period nano fabricated diffraction gratings. Start-
ing from a supersonic Na source with a brightness of
B ≈ 1019 s−1cm−2sr−1 the average count rate 〈I〉, in
the interference pattern was 300 atoms per second. Since
then, gratings of 100 nm period have been used to gen-
erate fringes with up to 300,000 atoms per sec.

We use this design (shown in Fig. 21) to illustrate how
a standing wave interference pattern is formed by the
two running waves. Starting with a common beam that
is incident on two gratings (G1 and G2), one wave is
formed by 0th and 1st order diffraction, while the other
is formed by -1st and +1st order diffraction. The dif-
ference in momentum is thus one unit of ~Gx̂. So we
describe the incident running waves by the functions ψ1

and ψ2e
iGxei∆φint . These running waves differ in mo-

mentum explicitly by ~Gx̂ due to diffraction. The waves
also differ in phase by ∆φint due to different interactions
along the two paths.

In the zone where these coherent running waves over-
lap, the atom beam intensity is

I(x) =
∣

∣ψ1 + ψ2e
i∆φinteiGx

∣

∣

2

I(x) = 〈I〉+ 〈I〉C cos(∆φint +Gx). (14)

This interference pattern is a standing wave in space
but is unchanging in time. The fringes have a period
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FIG. 21 (color online) Three grating Mach-Zehnder atom interferometers. (a) Atom Interferometer setup used in Keith et al.
(1991). (b) Interference fringe data and best fit with 〈I〉 = 157,000 counts per second and C = 0.42. A total of 5 seconds of
data are shown and the uncertainty in phase calculated by equation 19 is σφ = 2.7 × 10−3 radians. (c) Average intensity 〈I〉
and contrast C as a function of detector position [under different conditions than (b)].

of d = G/(2π) (just like the gratings), and a spatial off-
set in x̂ (i.e. a phase) that depends on the location of the
two gratings G1 and G2 as well as the interaction phase
∆φint. Equation 14 is a general result, and the fringes
can be detected in many different ways.

The intensity pattern has a mean intensity and con-
trast

〈I〉 = |ψ1|2 + |ψ2|2

C =
Imax − Imin

Imax + Imin
=
ψ∗

1ψ2 + ψ∗
2ψ1

|ψ1|2 + |ψ2|2
.

If one of the interfering beams is much stronger then the
other, for example |ψ1|2 ≫ |ψ2|2, then the contrast of the
interference pattern scales like

C ∼ 2|ψ2|
|ψ1|

= 2

√

I2
I1
. (15)

Consequently one can observe 20% (2%) contrast for an
intensity ratio of 100:1 (104:1) in the interfering beams.

If the waves are not perfectly coherent, then the inco-
herent part adds to the overall intensity, and the contrast
is diminished. If more than two components overlap, the
situation is somewhat more complicated.

The spatial oscillations in intensity can be detected,
for example, by measuring the atom flux transmitted
through a third (absorbing) grating (G3). In this case G3
acts as a mask to transmit (or block) the spatially struc-
tured matter wave intensity. By translating G3 along x
one obtains a moiré filtered interference pattern which is

also sinusoidal and has a mean intensity and contrast

〈I〉 =
w3

d
〈Ĩ〉, (16)

C =
sin(Gw3/2)

(Gw3/2)
C̃. (17)

where Ĩ and C̃ refer to the intensity and contrast just
prior to the mask. The phase of the filtered interference
pattern is given by

φ = G(x1 − 2x2 + x3) + ∆φint (18)

where x1, x2, and x3 are the relative positions of gratings
1, 2 and 3 with respect to an inertial frame of reference
(Schmiedmayer et al., 1997).

The phase φ will have a statistical variance, σ2
φ, in

the simplest case due to shot noise (counting statistics)
(Lenef et al., 1997; Schmiedmayer et al., 1997) given by

(σφ)2 ≡
〈

(φ− 〈φ〉)2
〉

=
1

C2N
(19)

where N is the total number of atoms counted.
For discussion of how phase fluctuations depend
on atom-atom interactions within the interferometer
see (Pezze and Smerzi, 2006; Scully and Dowling, 1993;
Search and Meystre, 2003). To minimize the uncertainty
in measured phase we therefore seek to maximize C2N ∝
C2〈I〉 by choosing the open fractions wi/d for the three
gratings, where wi is the window size for the ith grating
and d is the grating period. The open fractions that max-
imize C2〈I〉 are (w1/d, w2/d, w3/d) = (0.56, 0.50, 0.37).
With these open fractions, the theoretical value of C =
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FIG. 22 Atom interferometers based on three standing waves of light. (a) Atom beam and three Kapitza-Dirac gratings. (b)
Atom interference patterns for both output ports demonstrate complementary intensity variations. This is a consequence of
atom number conservation. Figures a and b reproduced from (Rasel et al., 1995). (c) Interferometer based on three Bragg
gratings. Dashed line shows the path of auxiliary optical interferometer used for stabilization. (d) Intensity fluctuations in
beam A vs. position of the Bragg gratings. For second order Bragg diffraction, fringes of half the period are formed. Figures
c and d reproduced from (Giltner et al., 1995a). (e) Schematic of the π/2− π − π/2 Bragg interferometer for atoms in a BEC
falling from a trap. (f) Absorption images and density profiles demonstrating different outputs of the interferometer. Figures
e and f reproduced from (Torii et al., 2000).

0.67 and 〈I〉/Iinc= 0.015. If vdW interactions between
atoms and gratings are included, then open fractions of
the first two gratings should be increased for best perfor-
mance (Cronin et al., 2005).

There are in fact several different interferometers
formed by the gratings. For example, the 1st and 2nd

orders can recombine in a skew diamond to produce an-
other interferometer with the white fringe property. Ad-
ditional mirror images of these interferometers make con-
trast peaks on either side of the original beam axis, as
shown in Fig. 21. All those interferometers can have
fringes with the same phase, and consequently one can
therefore build interferometers with wide uncollimated
beams which have high count rate, but lower contrast.
(The contrast is reduced because additional beam com-
ponents such as the zeroth order transmission through
each grating will also be detected.)

Mechanical gratings with much larger periods have
been used to make interferometers in the extreme limit
of non-separated beams. We discuss these in the Talbot-
Lau interferometer section ahead.

For well-collimated incoming beams, the interfering
paths can be separated at the 2nd grating. For exam-
ple in the interferometer built at MIT the beams at the
second (middle) grating have widths of 30 µm and can
be separated by 100 µm (using 100-nm period gratings
and 1000 m/s sodium atoms (λdB = 16 pm). Details of
this apparatus, including the auxiliary laser interferome-
ter used for alignment and the requirements for vibration
isolation, are given in (Schmiedmayer et al., 1997).

This geometry was used in the first atom interferom-
eter with physical isolation of the spatially separated
paths. Isolation was provided by inserting a 10 cm long
metal foil between the two paths, so that the electric or
magnetic field or gas pressure could be varied on the left
or right arm separately. This resulted in measurements
of atomic polarizability (Ekstrom et al., 1995), the index
of refraction due to dilute gasses (Roberts et al., 2002;
Schmiedmayer et al., 1995), contrast interferometry us-
ing magnetic rephasing (Schmiedmayer et al., 1994), and
diffraction phases induced by van der Waals interac-
tions (Perreault and Cronin, 2005, 2006). In experi-
ments not explicitly needing separated beams, this ap-
paratus has been used to measure phase shifts due
to rotations (Lenef et al., 1997) and to study deco-
herence due to scattering photons and background
gas (Chapman et al., 1995b; Kokorowski et al., 2001;
Uys et al., 2005). This apparatus was also used to
perform the first separated beam experiments with
molecules (Na2) (Chapman et al., 1995a).

An interferometer with similar nanogratings was de-
veloped at the MPI in Göttingen and used to measure
the polarizability of He and He2 (Toennies, 2001).

2. Interferometers with light gratings

One can also build MZ interferometers with gratings
made from light (Fig. 22). These light gratings are gen-
erally near-resonant standing waves that make species-
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specific phase gratings. Because they transmit all the
atoms, light gratings are more efficient than material
gratings.

The third grating in a light interferometer can func-
tion in many ways to enable detection of the fringes. It
can recombine atom waves so their relative phase dictates
the probability to find atoms in one output port (beam)
or another. Alternatively, fringes in position space can
be detected with fluorescence from a resonant standing
wave. Another detection scheme uses backward Bragg
scattering of laser light from the density fringes. This
can be used in multi-path interferometers where phase
shifts affect the contrast of the fringes. (We discuss such
contrast interferometry in the next section.). Detecting
the direction of exiting beams requires that the incident
beams must be collimated well enough to resolve diffrac-
tion, and may well ensure that the beams are spatially
separated in the interferometer.

Rasel et al. (1995) used light gratings in the Kapitza-
Dirac regime with a 5µm-wide collimated beam. Many
different interferometers were formed, due to symmet-
ric KD diffraction into the many orders. Two slits after
the interferometer served to select both the specific in-
terferometer, and the momentum of the outgoing beam
(ports 1 and 2 in Figure 22.) Fringes with 10% contrast
show complementary intensity variations, as expected
from particle number conservation in a MZ interferome-
ter with phase gratings.

It is even more efficient to use Bragg diffrac-
tion because no atoms are lost to ‘unwanted’ orders.
Giltner et al. (1995a) used Bragg diffraction and a Ne∗

beam and obtained contrast of C=63%. Higher order
Bragg diffraction was also used to demonstrate smaller
period interference fringes shown in Figure 22. A Bragg
scattering interferometer for Li atoms with a contrast of
0.84 and a count rate of 17 kc/s was recently used to
measure the polarizability of Li atoms (Delhuille et al.,
2002a; Miffre et al., 2006b,c).

3. Time domain and contrast interferometers

Light gratings can easily be turned on and off, allow-
ing one to control the interaction times of atoms with
the three gratings. Thus, independent of initial longi-
tudinal momentum, all atoms will see an equal interac-
tion and will subsequently separate equally (since they
have the same momentum transferred by the grating).
Such interferometers are especially valuable in precision
experiments since time is so easily measured accurately.
This consideration also applies to optical Raman pulses,
which will be discussed in a later section. Torii et al.
(2000) made a 3-grating interferometer for ultra cold
atoms by pulsing gratings thrice in time. These pulsed
gratings are turned on for a duration long enough to pro-
duce Bragg diffracted momentum states. This duration
does not affect the precise timing between interactions,
but is long enough that diffraction in time is unimpor-

FIG. 23 Contrast interferometry. (a) Space-time represen-
tation of a two-path interferometer that is sensitive to the
photon recoil phase. (b) The three-path geometry. The over-
all fringes have large contrast at 2T and zero contrast at
2T + π/4ωrec. Bottom: Typical single-shot signal from the
contrast interferometer. (Gupta et al., 2002).

tant. Their fringes were read out in momentum space
by measuring the atom cloud position in absorption im-
ages taken shortly after the third grating pulse. Atoms
released from a BEC were used insuring that the momen-
tum spread of the cloud was smaller than a photon recoil
momentum ~kph thus allowing resolution of the output
states. More examples of time-domain interferometers
based on three diffraction gratings include (Gupta et al.,
2002; Wang et al., 2005).

Gupta et al. (2002) used one Kapitza-Dirac pulse fol-
lowed by a second order Bragg pulse to make an inter-
ferometer with three paths as shown in Fig. 23. One
can understand this arrangement as two separate two-
path interferometers whose density fringes overlap. Be-
cause the phase of each two-path interferometer changes
in time in opposite directions, the two density gratings
move in and out of register as time (and phase) increase,
hence the contrast oscillates rapidly with time. This in-
terferometer has been used to measure h/mNa to a pre-
cision of 7 ppm. This demonstrates the utility of con-
trast interferometry in which measurements of contrast,
not phase, are used. Contrast interferometry was pio-
neered in Schmiedmayer et al. (1994) where interference
patterns from atoms with different magnetic sublevels
moved in and out of register.

This contrast interferometer design offers several ad-
vantages compared to phase measurements made with
a regular interferometer. First, the fringe phase can be
accurately determined in a single “shot”, eliminating ef-
fects of shot to shot atom intensity fluctuations. Sec-
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ond, most experimental sources of phase noise affect each
two-path interferometer in the same way they move the
fringes but don’t change the contrast. For example, mea-
surements with the interferometer in (Gupta et al., 2002)
were nearly insensitive to vibrations, rotation, acceler-
ations, and magnetic field gradients. A relative phase
shift between the two interferometers can be caused how-
ever, by diffraction phases (Buchner et al., 2003). If the
Kapitza-Dirac pulse causes a phase shift between the 0th
and 1st diffraction order, then the contrast does not peak
at exactly 2T , where T is the time between diffraction
grating pulses. Hence, fluctuations in the intensity of
light used for the KD pulse can then lead to fluctuations
in the time at which the total contrast peak is visible.

Gupta et al. (2002) detected the contrast of the fringes
in space by measuring the intensity of reflected (Bragg
diffracted) light probing the fringes in space. The in-
tensity of reflected light can be continuously monitored
as the two sets of interference fringes pass through each
other in time. This causes oscillations in the intensity of
reflected light as shown in Fig. 23.

4. Talbot-Lau (near field) interferometer

We now turn to near-field interferometers. As dis-
cussed in Section II D, a high degree of spatial coherence
is needed to create recurring self-images of a grating due
to near-field diffraction (the Talbot effect). But com-
pletely incoherent light can still produce fringes down-
stream of a grating pair (the Lau effect). When two grat-
ings with equal period (d) are separated by a distance L1,
the Lau fringe contrast is maximum at a distance beyond

FIG. 24 A sketch of the Talbot-Lau interferometer setup con-
sisting of three gratings. The first grating is illuminated by
an uncollimated molecular beam. Still, coherent interference
occurs between all paths that originate from one point at
the first grating and meet at the a point on the third grat-
ing. By varying the grating position x3, a periodic pattern
in the molecular distribution can be detected. Figure from
(Brezger et al., 2003).

the second grating of

L2 =
L1LT

n
2m

L1 − LT
n

2m

(20)

where LT = 2d2/λdB is the Talbot length and the inte-
gers n and m refer to the nth revival of the mth higher-
order Fourier image. The fringe period is then

d′ = d
L2 + L1

mL1
. (21)

If a 3rd grating is used as a mask to filter these fringes,
then a single large-area integrating detector can be used
to monitor the fringes. This 3-grating arrangement is
a Talbot-Lau Interferometer (TLI). A typical TLI uses
three identical gratings and L1 = L2 = LT /2 with n = 1
and m = 2.

The first grating can be regarded as an array of
small but mutually incoherent sources of diverging waves.
Shortly after the second grating near-field diffraction
causes any shadow effects to become blurred out. At
a distance L2 from the second grating, spatial structure
in the intensity starts to reemerge. The intensity oscil-
lations observed with a TLI are not a ray-optics phe-
nomenon; they are due to wave interference for the mul-
tiple paths shown in Figure 24. Evidence for this is that
L2 depends on λdB (and hence a fairly monochromatic
velocity distribution is needed for optimum contrast).
The second grating can be a phase grating, but the first
and third gratings must be amplitude gratings. The the-
ory of this interferometer is discussed in (Batelaan et al.,
1997; Brezger et al., 2003; Clauser and Li, 1994b, 1997;
Clauser and Reinisch, 1992).

A famous feature of a TLI is that the contrast is unaf-
fected by the beam width. A large transverse momentum
spread in the beam is also tolerated. Hence much larger
count rates can be obtained with a TLI.

Furthermore, in a TLI the relationship L1 = L2 =
LT /2 means that the maximum grating period is d <√
L1λdB ∼ M−1/4 where M represents mass for a ther-

mal beam. In comparison, for a MZI with resolved paths
the requirement is d < λdBL/(∆x) ∼ M−1/2 where ∆x
is the width of the beam and L is the spacing between
gratings. Thus the TLI design is preferable for massive
particles.

A Talbot-Lau interferometer was first built for atoms
by Clauser and Li (1994b) using a slow beam of potas-
sium atoms. The experiment used gratings with a pe-
riod of d=100 µm, and a count rate of 〈I〉 = 4 × 107

atoms/sec was achieved. The source brightness was 2500
times weaker than in the 3 grating Mach Zehnder inter-
ferometer of Keith et al. (1991), but the signal was about
3000 times stronger. Because of its attractive trans-
mission features, and the favorable scaling properties
with λdB, the TLI has been used to observe interference
fringes with complex molecules such as C60, C70, C60F48,
and C44H30N4 (Brezger et al., 2002; Hackermuller et al.,
2003b). Of course, the TLI does not separate the or-
ders - indeed components of the wave function are only
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displaced by one grating period at the Talbot length.
Even though the TLI interferometer cannot offer sep-
arated paths, it is still sensitive to inertial forces, de-
coherence, and field gradients (Clauser and Li, 1994a;
Hackermuller et al., 2004; Hornberger et al., 2003).

Cahn et al. (1997) used the phrase “time domain in-
terferometry” to describe a Talbot-Lau interferometer
that consists of two (Kapitza Dirac) gratings pulsed in
time, and renders interference fringes in position space.
A third pulse of light, a traveling wave, was Bragg re-
flected by the atomic density pattern and thus served as
the detection scheme for fringes. The atom fringe con-
trast (and backscattered probe light) oscillates with the
characteristic Talbot time τT =  LT /v = 2d2m/h, and
this readout mechanism demonstrates 100 percent con-
trast even with an ‘uncollimated cloud’ of atoms. Talbot
Lau interferometry with (pulsed) light gratings has also
been explored by (Cohen et al., 2000; Deng et al., 1999;
Turlapov et al., 2003, 2005; Weel et al., 2006; Wu et al.,
2005a).

C. Interferometers with path-entangled states

In some interferometers, the internal state of the atoms
depends on the path through the interferometer. Hence
the state of the atom is entangled with the path. This
usually occurs when the RF or laser photons that cause
a transition between internal states also impart momen-
tum, thus creating such entanglement.

Such entanglement has implications both for what the
interferometer can measure, and for how the interfer-
ence can be detected. Detection is the more obvious; if
recombination results in oscillations between two inter-
nal states, then state-sensitive detection can reveal the
fringes without need for the atom paths to be spatially
resolved. The influence of having different internal states
in the middle of the interferometer is more subtle. Many
atomic properties such as polarizability and scattering
lengths depend on the state; hence such interferometers
naturally measure the difference of that property between
the states which is generally less informative than the
property in one state.

1. Optical Ramsey-Bordé interferometers

When a traveling wave of resonant light intersects a
two-level atom, the atom is put into a superposition of
ground and excited states in which the photon absorbed
in promoting the atom to the excited state has added its
momentum to that of the ground state, resulting in a dif-
ferential momentum of ~kph between ground and excited
state (Fig 25a).

|a, p〉 → sin(θ)|a, p〉 + cos(θ)|b, p+ ~kph〉 (22)

Bordé’s seminal 1989 paper that Optical Ramsey spec-
troscopy by four traveling laser fields is an atom inter-
ferometer when taking the momentum transfer in the

FIG. 25 Different schemes used to place atoms in a superpo-
sition of momentum states. (a) superposition with a meta-
stable state using a π/2 pulse. (b) Stimulated Raman transi-
tion with two light fields. (c) Bragg scattering with monochro-
matic light. ∆ is the detuning from resonance. The dashed

curve is the kinetic energy
p2

light

2m
.

excitation process into account (Bordé, 1989). Such an
experiment is now often called a Ramsey-Bordé inter-
ferometer. In comparison, the classic Chebotayev pa-
per (Chebotayev et al., 1985) focused on Kapitza-Dirac
or Bragg diffraction gratings that preserve atoms’ inter-
nal state. A unified description of these cases is found in
(Bordé, 1997).

If the excitation is on resonance, the fraction of ampli-
tude that is deflected by the transition is determined by
the pulse area θ =

∫

Ω1dt where Ω1 = dab · E0/~ is the
bare Rabi frequency. A Ramsey-Bordé π

2 -pulse (named
for the condition θ = π/2) results in an equal splitting
of the amplitude between states |a〉 and |b〉 by resonant
light. If the excitation is detuned by ∆

Pb(t) =
1

2

(

Ω1

ΩR

)2

[1− cos(ΩRt)], (23)

where ΩR =
√

Ω2
1 + ∆2 is the generalized Rabi fre-

quency. When the detuning grows the oscillations be-
come more rapid and less complete.

For an optical Ramsey-Bordé interferometer to work,
the lifetime of the excited state must be comparable to
the transit time through the interferometer in order to
avoid coherence-destroying spontaneous decay of state
|b〉 (see Section IV.B. on decoherence). Consequently
optical Ramsey-Bordé interferometers are generally used
with long-lived, metastable excited states such as the 1S-
2S transition in H, or the lowest-lying intercombination
lines of Mg or Ca (Gross et al., 1998; Morinaga et al.,
1989; Oates et al., 1999; Ruschewitz et al., 1998).

In the 4 zone Ramsey-Bordé interferometer atoms
passing through the first laser beam are put in a superpo-
sition of internal states |a〉 and |b〉. Several possible paths
exit this apparatus, but only the paths shown in Fig. 26
cause interference fringes in the populations (outputs I
and II of figure 26). Oscillations in the state |b〉 pop-
ulation are controlled by the phase of the laser at each
of the 4 zones, therefore the simplest way to produce
fringes is to adjust the laser frequency. Additional phase
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FIG. 26 Ramsey-Bordé Interferometer. (Left) In the first interaction zone the matter wave is coherently split into two partial
waves with internal states |a,ma〉 and |b,mb〉 corresponding to energy levels a and b respectively, and the number m of photon
momenta transferred to the atom. (Right) Fringe shifts due to rotation at different rates. Figures and caption reproduced from
Riehle et al. (1991).

shifts in the fringes can be caused by any interaction that
affects the internal states differentially, for example mag-
netic fields. Because of the photon recoil, the two paths
are also separated in space and are therefore sensitive to
field gradients and inertial displacements.

This 4 zone design of a Ramsey-Bordé interferome-
ter was realized by Riehle et al. (1991) who also demon-
strated the linear increase of phase shift with rotation
rate Ω. The data shown in Fig. 26 are the first demon-
stration of the Sagnac effect for atom interferometers.

Since then many Ramsey-Bordé interferometers
were employed for H, Mg, and Ca atoms and I2
molecules for precision experiments such as high
resolution spectroscopy (Degenhardt et al., 2005;
Gross et al., 1998; Heupel et al., 2002; Huber et al.,
1998; Keupp et al., 2005; Kisters et al., 1994;
Oates et al., 1999; Sengstock et al., 1993; Sterr et al.,
2004; Wilpers et al., 2002) and fundamental stud-
ies such as geometric phases, and light shift potentials
(Mei et al., 2000; Muller et al., 1995; Yanagimachi et al.,
2002), transition Stark shifts (Morinaga et al., 1993;
Rieger et al., 1993) and multiple beam high-finesse
atom interferometry (Hinderthur et al., 1997, 1999;
Ruschewitz et al., 1998; Weitz et al., 1996) and molecule
interferometry (Bordé et al., 1994).

2. Raman interferometry

A similar beam splitter can be implemented using
Raman transitions between two low-lying (e.g. hyper-
fine) states in a three-level atoms (Fig. 25b). The su-
perposition is now between two long-lived states and can
be driven with lasers tuned off-resonant from the excited
state so that spontaneous emission is no obstacle to co-
herence time. For building an atom interferometer one
has to transfer momentum during the Raman transition.

Consequently two counter propagating running waves10

(ω1 and ω2) of light with frequencies tuned to Raman
resonance (~ω1 − ~ω1 = E|a〉 − E|c〉 = ∆Ehf) are used
to stimulate Raman transitions between two hyperfine

FIG. 27 Raman pulse interferometer. (a) Transverse splitting
and (b) longitudinal splitting of atoms with a π/2− π − π/2
pulse interferometer. The mechanical recoil from the first
π/2 pulse (at position 1) coherently splits the atomic wave
packet. The π pulse (positions 2 and 3) redirects each wave
packet’s trajectory. By adjusting the phase of the second π/2
pulse (position 4), the atom can be put into either |1〉 or |2〉.
In the experiment, the atoms were prepared in the |1〉 state
(solid lines) and detected in the |2〉 state (dashed lines). (Bot-
tom) Interferometer fringes are observed by scanning the fre-
quency of the Raman laser beams. Figures reproduced from
Kasevich and Chu (1991).

10 Counter-propagating light beams make Doppler sensitive transi-
tions that are highly selective for atomic velocity; co-propagating
light beams make Doppler insensitive transitions. Doppler sen-
sitive Raman transitions can prepare atoms with a momentum
uncertainty of less than a photon recoil (Kasevich et al., 1991).
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states |a〉 and |c〉 (Fig. 25b). Absorption from one light
beam and stimulated emission into the other gives atoms
a momentum kick of ~∆k = ~k1+~k2 ∼ 2~kph. Since the
hyperfine splitting ∆Ehf ≪ ~ω1,2 is much smaller then
the energy of either of the photons (~ω1,2) the momen-
tum transfer can be approximated by 2~kph (reduced by
the cosine of the half-angle between light beams).

Transfer of amplitude from |a〉 to state |c〉 mimics the
dynamics of a driven 2 level system with coupling fre-
quency equal to the product of the individual Rabi fre-
quencies divided by ∆ (see Fig. 25b).

An alternative to Raman transitions is Stimu-
lated Adiabatic Rapid Passage STIRAP described by
Gaubatz et al. (1990) and Bergmann et al. (1998). This
process is more controllable since it does not depend so
critically on laser power. The method is based on adia-
batic change of a “dark state” and has the disadvantage
that only one superposition of the two states survives
(the other decays spontaneously) hence its application
to interferometry gives only one output state.

Starting with laser-cooled sodium atoms launched from
a trap, Kasevich and Chu (1991, 1992) demonstrated an
interferometer based on stimulated Raman transitions by
employing a π/2 − π − π/2 sequence (Fig. 27). The
π/2 pulses act as beam splitters, and the π pulse acts
to completely change the state and reverse the differ-
ential momentum in each arm of the interferometer in
essence a three-grating interferometer. Similar to the
Ramsey-Bordé interferometer, the paths have internal
state labels. The interference is detected as oscillations
in the population of the different internal states after
the interferometer, as measured with state-sensitive flu-
orescence or ionization. Since the gratings are pulsed
in time such an arrangement is a time domain atom in-
terferometer. These experiments employed atomic foun-
tains for Na (Kasevich and Chu, 1991, 1992) or Cs atoms
(Peters et al., 1999) to permit longer interaction times.
In the first experiments (with Na) a time delay between
pulses of 100 msec gave a wavepacket separation of 6
mm (cf. 66 µm for thermal beams with fabricated grat-
ings (Keith et al., 1991)). Chu and coworkers have re-
fined this technique to get high contrast (C=65%) fringes
with a count rate of 〈I〉 = 106 atoms per second. This
allowed measurements of g at the part-per-billion level
(Peters et al., 1999, 2001). The theory of this interfer-
ometer is discussed in detail by Young et al. (1997) and
Kasevich and Chu (1992). Higher order Raman transi-
tions can be stimulated with multiple pulses, and mo-
mentum differences of 60 ~kph have been used for inter-
ferometry (Weiss et al., 1993).

A beam experiment using the same kind of Raman
transitions was used by Gustavson et al. (1997, 2000) to
measure rotation rates, and achieved short-term sensitiv-
ity to rotations of 6× 10−10(rad/s)/

√
Hz as discussed in

Section V.A.. In this configuration, the gratings were not
pulsed, so this was a space domain interferometer.

We discuss several other applications of this kind of in-
terferometer, like precise measurements of gravity gradi-

ents (McGuirk et al., 2002; Snadden et al., 1998), New-
ton’s constant G, and the value of ~/M (Peters et al.,
1997; Weiss et al., 1993) in Section V on precision mea-
surements.

D. Longitudinal interferometry

The standard description of Ramsey’s separated fields
experiment treats the longitudinal motion classically and
as being the same for both states. This is obviously in-
correct if the states have different magnetic moments and
the beam passes into a region with a different magnetic
field - the field gradient puts a different force on compo-
nents with different magnetic moments, and could even
reflect one state but not the other. Another source of
longitudinal energy shift is excitation by RF radiation
whose frequency is below (or above) resonance: the re-
maining energy to excite the atom comes from (or goes
into) the kinetic energy of the excited state component.
In fact, the transition can be made by a gyrating field
with zero temporal frequency, especially if the beam is
moving fast so that the spin can’t follow the field as it
passes. We discuss these cases below.

1. Stern Gerlach interferometry

While a Stern-Gerlach magnet can entangle an atom’s
spin and momentum transverse to the beam velocity, it
is difficult to redirect and recombine amplitudes along
these two paths (Englert et al., 1988; Reinisch, 1999;
Schwinger et al., 1988; Scully et al., 1989). In a differ-
ent geometry, atoms in a beam can be split longitudi-
nally, so that components of each atom are separated
along the direction of the beam velocity. This is easy
to accomplish, and has the advantage (for interferome-
try) that the two paths overlap (DeKieviet et al., 1995;
Miniatura et al., 1991; Robert et al., 1991).

A longitudinal Stern-Gerlach interferometer from
Robert et al. (1991) is shown in Fig. 28. A partially po-
larized beam of metastable hydrogen atoms in the state
2s1/2, F=1 (λdB = 40 pm) is prepared in a linear superpo-
sition of magnetic sub-levels by a non-adiabatic passage
(projection on the new eigen-states) through a magnetic
field perpendicular to the atomic beam. The magnetic
field gradient along the beam shifts the longitudinal mo-
mentum of different atomic center of mass wave packets
proportionally to their magnetic state. Next, the differ-
ent magnetic sub-levels enter a constant magnetic field
region, and after 10 cm are recombined again in a re-
gion identical to the one used as a beam splitter. Finally,
an analyzing magnetic field selects a particular magnetic
polarization, whose intensity is then measured by detect-
ing Lyman-α photons emitted in the decay of the 2p1/2

state to the ground state. A typical interference pattern
is shown in Fig. 28 (Chormaic et al., 1993; Robert et al.,
1992).
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Interference fringes are obtained in the beam inten-
sity by changing the magnetic field strength, and arise
from the different potentials experienced by the mag-
netic sublevels in the region of constant magnetic field.
The longitudinal Stern-Gerlach interferometer was ap-
plied to demonstrate the effect of topological phases on
the atomic wavefunction for a non-adiabatic cyclic evo-
lution (Miniatura et al., 1992).

2. Spin echo

Along similar lines, DeKieviet et al. (1997) developed
an atomic beam spin-echo (ABSE) interferometer with
3He atoms. Following the Stern-Gerlach arrangement
described above one can apply a reversed field (or a π-
pulse) and extend this type of interferometer with an
“echo”, in complete analogy to the spin echo technique
used for neutrons (Mezei, 1993). The 3He ABSE has the
advantage that 3He can reflect from a surface at grazing
incidence, and therefore can be applied as interferomet-
ric probe of surfaces (DeKieviet et al., 2000a, 1997, 1995;

FIG. 28 Longidudinal Stern Gerlach interferometer. (a) Ex-
perimental set-up: source G, polarizing and analyzing mag-
netic fields P and A, mixers M and M’, frame FR with current
iF is creating a magnetic field B, detector DT. (b) The en-
ergy landscape for the Zeeman states (-1,O,1) of H* (2s1/2,
F = 1) along axis Z. (c) Interference pattern obtained
with a transverse magnetic field in region FR. Figure from
(Chormaic et al., 1993).

FIG. 29 (color online) Atomic Beam Spin Echo interference
technique for a spin-1/2 particle. (a) Schematic of setup:
upon entering spin echo field 1, the linearly polarized wave
packet |↑〉 is split into two polarizations |→〉 and |←〉, having
different energies in the longitudinal magnetic field. By in-
verting the direction of the spin echo field 2 with respect to
the first one, the Zeeman states |→〉 and |←〉 exchange roles
(like a π-flip). At the end they overlap and coherently add up
to |↓〉 or |↑〉 depending on the phase shift. The initial linearly
polarized wave packet reappears as an echo. (b) Experimen-
tal ABSE data using a 4 K beam of 3He atoms. Plotted is
the beam averaged linear polarization as a function of the
spin echo field. (spin rotation): when spin echo field is off,
the interference pattern is generated through Stern-Gerlach
interferometry. (spin echo): when the same (but inverted)
current is applied through both spin echo coils an echo ap-
pears. Figure curtesy of M. DeKieviet

Zielonkowski et al., 1998).

In a quantum mechanical picture, the Larmor preces-
sion can be viewed as a magnetic birefringence (Fig. 29a).
Note that the Zeeman states |→〉 and |←〉 arrive with
some time delay τSE (spin echo time) at the scattering
center, which allows time-correlation spectroscopy of the
sample. The contrast in the measured echo signal de-
pends then on the degree to which the Zeeman states
are scattered coherently. For non-static samples this will
depend on τSE (see Fig. 29b). The interference contrast
directly measures the correlation function I(q, τSE) in
the time domain, which is the Fourier transform of the
scattering function S(q, τSE) (q is determined by the
scattering geometry). ABSE with 3He atoms has been
successfully applied in surface science as an appealing al-
ternative to time-of-flight experiments. The spin echo
experiment is much more sensitive, with an energy reso-
lution extending into the sub-neV-range.
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ABSE is not restricted to longitudinal interferometry;
depending on the direction of the magnetic field gradi-
ent, the paths of the magnetic sub-states may diverge
perpendicular to the beam direction. Using atomic hy-
drogen with a de Broglie wavelength of around 100 pm,
Lang (1998) measured a transverse spin echo interference
signal for path separations exceeding 100 nm.

In an entirely optical setup a spin echo was demon-
strated through hyperfine pumping a thermal beam of
lithium atoms (Zielonkowski et al., 1998). Here, the spin
echo is induced via a “virtual magnetic field”, by ap-
plying a short pulse of intense, far detuned photons.
The light causes a shift in the hyperfine levels that de-
pends linearly on the quantum number mF , just like Zee-
man splitting (Cohen-Tannoudji and Dupont-Roc, 1972;
Rosatzin et al., 1999).

3. Longitudinal RF interferometry

Dhirani et al. (1997) showed that a detuned radiofre-
quency field constitutes a beamsplitter in longitudinal
momentum space for atoms. If an atom makes a transi-
tion to an excited quantum state by absorbing a quantum
of off resonant RF radiation, then its longitudinal veloc-
ity is changed such that total energy is conserved.

FIG. 30 Longitudinal RF interferometer (a) Schematic. Coils
at longitudinal positions x1 and x2 with oscillatory fields at ω1

and ω2, respectively, make the differentially tuned separated
oscillatory fields (DSOF). The amplitude modulator coil is lo-
cated at xm. The ground state is selected by upstream Stern-
Gerlach magnet SG1, and the excited state by SG2. (b) Wave
number k versus the longitudinal position x for states that are
detected. Dashed lines indicate the excited internal state, and
hatched areas denote the differential phases accrued by atoms
excited at x1 (x2). (c) Fringes demonstrated with the DSOF
system and an additional AM modulator (Smith et al., 1998).

Using two such beam splitters Smith et al. (1998) con-
structed a longitudinal atom interferometer in a gener-
alization of Ramsey’s separated oscillatory fields (SOF)
configuration. This technique is referred to as differen-
tially tuned separated oscillatory fields, or DSOF. Os-
cillations in excited state population both in time and
space occur after an atom beam passes the two DSOF
regions. To measure the phase and amplitude of these
oscillations, a third oscillatory field and a state selective
detector were used as shown in Fig. 30.

This interferometer is well suited to studying the lon-
gitudinal coherence properties of matter-wave beams.
Scanning the position of the third oscillating field demon-
strates that the DSOF system can produce or detect co-
herent momentum superpositions.

The envelope of the fringes in space Fig. 30 indicates
the velocity width of the atom beam was 36 ± 4 m/s
and the fringe period in space indicates the most prob-
able beam velocity was 1080 ± 3 m/s. An argon seeded
supersonic source of sodium atoms was used.

The same DSOF arangement was used to demonstrate
the absence of off-diagonal elements in the densiy ma-
trix in a supersonic atom beam, thus showing that there
are no coherent wave packets emerging from this source.
(Rubenstein et al., 1999a). In a further demonstration,
the DSOF longitudinal interferometer was used to mea-
sure the complete longitudinal density matrix of a de-
liberately modulated atom beam (Dhirani et al., 1997;
Rubenstein et al., 1999b). A fully quantum mechanical
treatment of this system was developed for this analy-
sis (Kokorowski et al., 1998), and these experiments are
summarized by Kokorowski et al. (2000).

4. Stückelberg interferometers

Stückelberg oscillations occur when a level-crossing for
internal states acts as a beam splitter. For example, if an
atom can change its internal state on the way either to or
from a reflecting surface, then two amplitudes for mak-
ing a transition will interfere. Oscillations in the prob-
ability for state-changing atomic reflection can thus be
regarded as longitudinal interferometry. One application
is to survey the van der Waals potential near surfaces
(Cognet et al., 1998; Marani et al., 2000).

E. Coherent reflection

Here we briefly list more experiments in which
reflected de Broglie waves are demonstrably coher-
ent. Shimizu demonstrated reflection mode holograms
(Shimizu and Fujita, 2002b) and a reflection-mode dou-
ble slit experiment (Kohno et al., 2003). Westbook used
a Raman-pulse atom interferometer to study coherent
reflection from an evanescent light field (Esteve et al.,
2004) as shown in Figure 31. Dekieviet used a lon-
gitudinal Stern-Gerlach interferometer to study quan-
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tum reflection of 3He. (Druzhinina and DeKieviet,
2003). Zimmermann used a chip-integrated mag-
netic grating to diffract and interfere reflected BEC’s
(Fortagh and Zimmermann, 2007; Gunther et al., 2007,
2005).

FIG. 31 An atom mirror inside an interferometer. (a) Dia-
gram of the interferometer. The arrows represent Raman π/2
pulses which create superpositions of different internal states
and momenta. The atomic mirror is an evanescent wave at
the surface of a glass prism represented by the trapezoid. The
letters a, b, c and d, label the 4 possible paths. (b) Fringes
obtained by scanning the pulse separation T with the mir-
ror(filled symbols) and without the mirror (open symbols).
Figures from (Esteve et al., 2004).

F. Confined Atom Interferometers with BEC’s

In this section we discuss a different type of interfer-
ometer, where the atoms are confined in a 3-dimensional
potential well during the splitting of their wave function
and application of the interaction. In this new type of
splitting process, the single trap holding the ultra cold
gas of atoms (or BEC) is continuously deformed into two
adjacent potential wells, each containing a part of the
wave function. Thus the splitting step in the interferom-
eter occurs in position space.

This splitting in position space is in sharp contrast to
previously discussed atom and most optical interferom-
eters, in which the splitting process occurs in momen-
tum space. Using diffraction gratings or pulses of light
transfers momentum; similarly a partially reflecting sur-
face changes the momentum of the reflected, but not the
transmitted, beam. The two maxima then separate to a
varying extent in position space only because the wave is

split in momentum space. In the trapped atom interfer-
ometers discussed here the atom waves remain confined
and are separated by moving the potential wells apart.

Important advantages of confined atom interferome-
ters are manifold. The confinement can support the
atoms against gravity, offering potentially unlimited ex-
periment times with obvious advantages for precision ex-
periments. The location of the atom wave can be known
very precisely. This is essential in experiments studying
atom-surface interactions like the Casimir potential, or
for studying spatially varying fields or interactions with
small objects that are coupled to the atoms via an evanes-
cent wave. If a BEC is confined, the large scale coherence
allows new ways to measure the relative phase of two con-
densates using just a small sample of the atoms. Addi-
tionally, confined atom interferometers, especially those
using atom chips, can be small and portable.

Confined atom experiments differ qualitatively from
the many experiments that have been carried out us-
ing BEC’s as a bright source of cold atoms propagating
in free space (Gupta et al., 2002; Torii et al., 2000). In
those the physics is dominated by single-particle dynam-
ics and does not exploit the particular coherence prop-
erties of BECs. In the interferometers described here,
the intrinsic properties of the BEC allow novel measure-
ments, and create new problems to be overcome.

Confined atom interferometers naturally operate with
significant density to achieve the advantages of large sig-
nals, from which several disadvantages follow. First of
all, the matter wave optics becomes non linear. The
atom-atom interactions lead to a mean field potential
(the chemical potential in a BEC) that can cause a rel-
ative frequency shift between atoms in the two wells. In
addition the potential wells have to be controlled very
accurately in stiffness and depth, to prevent additional
sources of systematic frequency shifts. (In waveguide in-
terferometers where the atoms are confined only in two
directions, any residual potential roughness gives addi-
tional problems.)

Splitting a condensate coherently produces a state
whose relative phase is specified at the expense of a su-
perposition of number states with different relative pop-
ulations because of the (approximate) number-phase un-
certainty relation. Knowing the relative phase of two
condensates requires an uncertainty in the relative num-
ber of atoms in each well, even though the total number
may be certain. The wave function in each well is there-
fore a coherent superposition of states with different rel-
ative mean field interactions (different relative chemical
potentials) and therefore evolve at different rates. The
resulting dephasing limits the coherence time to less than
50 ms for a typical million-atom BEC (with diluteness
parameter, na3 ≈ 10−4).

In addition one has to carefully consider the collective
excitations of the condensate (e.g. sound or shape oscil-
lations) which may arise if the potential changes too sud-
denly. This can be overcome by applying techniques from
coherent control as shown in Hohenester et al. (2007).
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FIG. 32 (color online) Michelson Atom Interferometer. (a)
Schematic drawing of the atom chip (not to scale). The prism-
shaped mirrors are integrated with micro fabricated wires on
an aluminum nitride substrate. The dimensions of the whole
chip are 5 cm by 2 cm. (b) Photo of the atom chip on its
copper holder. (c) Interference fringes after 1 ms propagation
time in the waveguide with the magnetic gradient turned on
for 500 µs while the average separation of clouds is 8.82 µm.
Figures and caption reproduced from (Wang et al., 2005).

Recombining the split double well into a single trap al-
lows in principle the readout of the relative phase as a rel-
ative population difference between ground state and first
excited state (Andersson et al., 2002; Hinds et al., 2001).
In the recombination, the non linear interactions lead to
creation of (fast moving) solitons. These can enhance
the sensitivity (Negretti and Henkel, 2004) of phase mea-
surements, but are much harder to control. Consequently
the experiments recombine the split waves by releasing
them from the trap, then free expansion reduces the non-
linearity and facilitates the overlap.

Confined atom interferometers have so far come in two
types: BEC’s confined to waveguides (i.e. in two di-
mensions) which are described in the next sub section,
and those confined in traps (i.e. in all three dimensions)
using focused light beams (subsection 2) and magnetic
fields generated by atom chips (subsection 3). Finally
in the last subsection we describe an example where it
is possible to establish and read out the relative phase
of two condensates that do not overlap during the entire
process and discuss whether this can be seen as a type of
interferometry involving two classical objects.

1. Interference with guided atoms

Given the existence of optical interferometers using
fiber optical wave guides, and the success in confining
and guiding ultra cold atoms, it is natural to consider
similar designs for atoms. While preliminary theoretical
study shows that special designs should allow multi-mode
interferometers (Andersson et al., 2002), no interferome-
ter devices involving atom waveguide beam splitters have
been demonstrated.

The first waveguide atom interferometer, by

Wang et al. (2005) and improved on by Garcia et al.
(2006), was designed to test coherent propagation in
atom waveguides, not waveguide beamsplitters. It was
a familiar three grating interferometer in which pulsed
light gratings split and recombined a BEC confined in a
weakly confining (magnetic) guide along the axis. The
BEC is split at t = 0 into two momentum components
±2~kL using a double pulse of a standing light wave.
A Bragg scattering pulse at t = T/2 then reverses the
momentum of the atoms and the wave packets propagate
back. At t = T the split wave packets overlap and a third
recombining double pulse completes the interferometer.
The output port is given by the momentum of the atoms
as detected by imaging (typically 10 ms) after release
from the guide. To apply a phase shift between the two
arms of the interferometer, a magnetic field gradient was
turned on for a short (500µs) time while the atom clouds
were separated. In the original experiment (Wang et al.,
2005) the propagation time in the interferometer was
varied from T = 1 ms to T = 10 ms. The contrast
of the fringes was as high as 100% for T = 1 ms, but
droped to 20% for T = 10 ms. The degradation of the
contrast is mainly due to the non linear term coming
from the interaction between the atoms. By reducing
the transverse confinement and consequently the non
linear interaction Garcia et al. (2006) reached much
longer coherent propagation up to 180 µm and times up
to 50 ms.

There is ample optical precedent for waveguide inter-
ferometers using 2-dimensional confinement since there
is wide application of optical fiber interferometers both
scientifically and commercially. On the other hand, in-
terferometry with 3-dimensionally trapped atoms has no
precedent in light optics11.

2. Coherent splitting in a double well

Three dimensional trapped atom interferometers are a
qualitatively new type of interferometer without prece-
dent in optics since it is not possible to trap photons,
move the trap around, and then somehow recombine the
photons. A trapped atom interferometer does just that.

Coherent splitting of the wave function by slowly de-
forming a single trap into a double well is the generic
trapped atom beam splitter, achieving physical separa-
tion of two wavefunction components that start with the
same phase. When the two wells are well separated, an
interaction may be applied to either. Finally the split
atoms in the two wells are recombined to observe the
interference.

11 One could argue that a Fabry-Perot is an (imperfect) trap for
photons and that the LIGO interferometer which uses Fabry-
Perot interferometers nested in a Michelson interferometer is not
far from this precedent.
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FIG. 33 Top: Optical double-well potential. (a) Schematic
diagram of the optical setup for the double-well potential.
The insert shows an absorption image of two well-separated
condensates in the double-well potential (he field of view is
70 × 300 µm). (b) Energy diagram, including the atomic
mean field, for the initial single-well trap with d=6 µm and
for the final double-well trap with d = 13µm (U0 = 5kHz,
atomic mean field energy ∼ 3kHz, potential “barrier”). (c)
Absorption image of fringes created by condensates released
from the double-well potential immediately after splitting (30
ms of ballistic expansion, field of view 600 × 350µm). (c)
Density profile obtained by integrating the absorption signal
between the dashed lines. Figure and caption adapted from
(Shin et al., 2004).

Such coherent splitting was first demonstrated by
Shin et al. (2004) who split a BEC by deforming an op-
tical single-well potential into a double-well potential. A
BEC was first loaded into the single trap and allowed 15
sec to damp its excitations. The splitting was done over
5 ms, slowly enough compared to a 600 Hz transverse
oscillation frequency in the trap not to excite substantial
transverse excitation of the two new condensates, but
not slowly enough that the mean field interaction would
cause the atom to divide exactly evenly between the two
wells (with exactly N/2 on each side there would be no
number uncertainty and hence the relative phase would
have been indeterminate).

The interferometer was completed by releasing the
trapped separated BEC’s and determining their relative
phase from the resulting fringes. Releasing the conden-

sates dramatically lowers the mean field interaction prior
to overlap, hence averting problems arising from the non-
linearity of atom optics. Another big advantage is that
overlapping two BEC’s produces high contrast fringes,
enabling an accurate determination of the phase from
each “shot” of the interferometer.

Observing the fringes in repeated experiments, starting
with fresh condensates each time, addressed the key ques-
tion: is the relative phase between the split condensates
random or consistent from shot to shot? There had been
some theoretical controversy on this subject. The fringes
observed when the load, split and immediate release se-
quence was repeated were in the same place, showing that
the relative phase between the two condensates was con-
sistent, i.e. that is can be controlled deterministically. It
was also shown that the phase evolved coherently for up
to 5 ms.

The condensates were separated by 13 µm in these
experiments, and the single atom tunneling rate between
the two wells was estimated to be 5×10−4 s−1, sufficient
to uncouple the BEC’s in separated wells and let their
phases evolve independently. It was verified that each
condensate evolved phase independently and was phase
shifted as expected by a local Stark shift.

This experiment showed definitively that splitting the
well led to BEC’s with a common phase, introduced a
new method to determine the phase that was not af-
fected by mean field interactions, and showed that coher-
ence could be maintained for several oscillation periods
of transverse condensate motion.

3. Interferometry on atom chips

The combination of well established tools for atom
cooling and manipulation with state-of-the-art micro fab-
rication technology has led to the development of atom
chips (Folman et al., 2002). Atoms are manipulated by
electric, magnetic and optical fields created by micro-
fabricated structures containing conductors designed to
produce the desired magnetic and electric fields. Techno-
logically, atom chip based atom interferometers promise
to be relatively inexpensive and presumably are relatively
robust. Atom chips have been demonstrated to be capa-
ble of quickly creating BEC’s and also of complex ma-
nipulation of ultra cold atoms on a micro scale. We trace
here the development of techniques to coherently split
the condensate and perform atom interferometry.

Many basic interferometer designs and beam split-
ters on an atom chip were conceived and tested
(Folman et al., 2002). Most of them rely on splitting
a magnetic potential in multi-wire geometry. The first
experiments demonstrating splitting, but not coherence,
were carried out in Innsbruck 1996-1999 with splitting a
guide with a Y-shaped wire (Cassettari et al., 2000a,b)
and a trap with a 2-wire configuration (Folman et al.,
2002).

At MIT interference with random phase using such
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FIG. 34 (color online) Coherent splitting with an RF induced
double well on an atom chip. (a) A wire trap is split by
coupling the magnetic substates by RF radiation. To achieve
the correct orientation (splitting orthogonal to gravity) the
trap is rotated and placed directly over the RF wire. (b,c) The
energy landscape before and after splitting. (d) Interference
is observed by switching the trap of, and letting the atomic
cloud overlap in time of flight. The image integrates over
the length of the condensate. (e) Observed distribution of
fringe phase and contrast obtained from multiple experiments
(Schumm et al., 2005).

a two wire setup was observed by Shin et al. (2005).
Simultaneously the first coherent splitting of trapped
micro manipulated atoms on atom chip was acieved
by Schumm et al. (2005) at Heidelberg, using radio
frequency induced adiabatic potentials (Colombe et al.,
2004; Lesanovsky et al., 2006a,b; Zobay and Garraway ,
1998). Analyzing interference patterns formed after com-
bining the two clouds in time-of-flight expansion, demon-
strated that the splitting is coherent (i.e. phase preserv-
ing) Figure 34.

The splitting using radio frequency induced adiabatic
potentials as developed in Heidelberg overcomes the dis-
advantages of the 2 wire setup: weak confinement during
the splitting, and extreme sensitivity to magnetic field
fluctuations. The new method allows very well controlled
splitting over a large range of distances - from 2 to 80
µm - thus accessing the tunneling regime as well as com-
pletely isolated sites.

The Heidelberg experiments (Hofferberth et al., 2006;
Schumm et al., 2005) are remarkable since they were per-
formed with 1d BEC (chemical potential µ < ~ω⊥), much
longer then the phase coherence length. Nevertheless
the interference patterns persist for as long as the con-
densate. All different regimes from physically connected

to totaly separated 1d BECs were accessible, and phase
locking by coherent tunneling in the intermediate regime
could be demonstrated.

With continued progress on these topics, together with
techniques for reducing dephasing of interferometers us-
ing BECs, interferometers using confined atoms hold the
promise to be employed as highly sensitive devices that
will allow exploration of a large variety of physics ques-
tions. These range from exploring of atom-surface inter-
actions to the intrinsic phase dynamics in complex in-
teracting (low dimensional) quantum systems and the
influence of the coupling to an external ‘environment’
(decoherence).

IV. FUNDAMENTAL STUDIES

In this chapter, we address two questions that lay peo-
ple often ask once they have understood the basic ideas
of atom interferometry: “Can you make interferometers
with any object, people for example?” and “Of what use
are atom interferometers?” We discuss the limits to par-
ticle size in section A, experiments that probe the transi-
tion from quantum behavior to classical behavior via the
process of decoherence in B, and how the ideas of sin-
gle particle coherence can be extended in D. The ques-
tion of utility is first addressed in section C, where we
show that measurable phase shifts arise not only from
potential differences, but from “weirder” things like the
Aharanov-Bohm effect and topological transport in gen-
eral. Then we describe how atom interference can be used
to study four different features of many-body systems in
section E, and finally address fundamental tests of charge
equality for protons and electrons. The actual order of
the sections does not reflect the answers to these ques-
tions in sequence, however; rather the first three address
single particle questions, section D addresses extensions
of coherence first to extended single particles, and then
to multi-particle systems, and section E is devoted to
describing studies of many particle systems that reveal
many-particle coherence and decoherence processes, or
in which atom interference is the tool that enabled the
study of their collective properties.

A. Basic questions: How large a particle can interfere?

When the first atom interferometers were demon-
strated, some of our colleagues expressed surprise that
“composite” particles would give such high contrast
fringes. These sentiments are in line with the idea that
there exists a quantum-classical boundary and that some-
how there must be a limit on the number or spacing of
internal states (i.e. the “complexity”) for particles in an
interferometer. Perhaps the mass, the size of a molecule,
or the strength of interactions with the environment can
limit or eliminate the interference. In this section we in-
vestigate the limits to coherent manipulation of the cen-
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ter of mass motion of larger and more complex particles,
and point to some interesting open problems. We shall
first consider practical limits set by particle size, grating
size, and interactions with the grating, and then move on
to more fundamental limits determined by interactions
with the surrounding environment.

Experiments with Na2 molecules (Chapman et al.,
1995a) demonstrate that particles with many internal
states show interference fringes even if the paths go on
opposite sides of a thin conductor. These experiments
also confirm what the first atom interferometers showed:
interference fringes can be observed when the size of the
particle is considerably larger than both its de Broglie
wavelength and its coherence length. For example in the
separated beam interferometer with Na2 λdB ≈ 10 pm
and the coherence length lcoh ≈ 100 pm are both much
smaller then the size of the molecule (∼400 pm). For the
experiments with C60 or larger molecules the parameters
are even more extreme (Arndt et al., 2005, 2001, 1999;
Brezger et al., 2003; Clauser, 1997; Hackermuller et al.,
2003b).

Perhaps a bit more surprising is the observation of
fringes in Talbot-Lau interferometers with hot particles
like C60, the surprise being that they have a sponta-
neous emission rate fast enough to emit IR photons dur-
ing the interference process. But since the maximum
separation of the paths in these experiments (about a
grating period) is much less than the wavelength of the
IR radiation, a few photons of emitted radiation can-
not be used to localize the molecule to one path or
the other (Hackermuller et al., 2004; Hornberger, 2006).
Thus the interference is between two spatially separated
paths along which the molecule emitted a photon and
changed from internal state |i〉 to final state |f〉. Inter-
estingly, IR emission would localize a molecule on one
side or the other of a conducting plate, so hot molecule
interference would not occur between paths separated by
a conductor12. This makes an important point: informa-
tion left in the environment is sufficient to destroy the
coherence; no actual measurement by a macroscopic ap-
paratus is necessary.

Even though a particle’s size itself poses no fundamen-
tal limit to matter wave interferometry, there are more
practical limitations to interferometry with large parti-
cles, such as 1. the time required to propagate through an
interferometer, 2. the requirement that the particles fit
through the openings on material gratings without undue
effects from Van der Waals interactions, and 3. whether
laser-based beamsplitters can work with particles larger
than the laser wavelength.

The time it takes a diffracted particle (with one grat-
ing momentum, ~G) to move one grating period sets the
characteristic time for interference of a particle of mass

12 Of course a separated path interferometer, not a Talbot-Lau in-
terferomter would be needed for this experiment.

m,

tchar =
d

~G/m
=
md2

h
=

~

2EG
(24)

where EG is defined as in Eq. 6. For a grating period
100 nm and a flight time of one second this limits the
mass to ∼ 10−17g, or about one million Na atoms. Such
a cluster would have a size of ∼ 30 nm and would just fit
through the gratings. For the 0.01s flight times charac-
teristic of current Talbot-Lau interferometers, this limit
would be around atomic mass 105, about an order of
magnitude heavier than current practice. Increasing the
time by an impractical factor (e.g. to a year, with con-
comitant inertial stabilization of the gratings) does not
improve the mass limit proportionately. The reason is
that the grating period has to be increased to accommo-
date the diameter of the particle (Hegerfeldt and Kohler,
1998, 2000; Schmiedmayer et al., 1997; Schollkopf et al.,
1998) which grows as m1/3. Thus a year-long interfer-
ometer can barely interfere a large bacterium as pointed
out by Schmiedmayer et al. (1997).

While this discussion of size/mass limits applies quite
accurately to Talbot-Lau interferometers, the require-
ments of a separated beam interferometer are several
times more stringent. In order to separate the paths the
beam must be collimated to better than the diffraction
momentum, which requires that the beam (and its trans-
verse coherence length) be several grating periods wide.
To separate these wider beams, the particles must prop-
agate for several characteristic times. Even worse, the
flux of particles will be dramatically reduced due to the
tight collimation. In contrast, Talbot-Lau interferome-
ters have no restriction on their width. Not surprisingly
they are the interferometer of choice for demonstrating
interference of heavy particles. And even with them,
it will be some time before sentient beings can be sent
through an interferometer and subsequently asked which
path they took.

While equation 24 shows that if molecules spend too
little time in the interferometer, they will not exhibit
quantum interference (Oberthaler et al., 1996b); on the
other hand, if particles spend too long interacting with
mechanical gratings, they will interact with the grating
bars, or be diffracted into very high orders. This is be-
cause of Van der Waals or Casimir-Polder interactions
between molecules and the grating bars (Grisenti et al.,
1999). To keep half the diffracted molecules in the central
n orders requires
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where V (r) is the atom-surface interaction potential.
Equation 25 assumes a grating with an open fraction of
50% and a grating thickness equal to the grating period
(d) (Perreault et al., 2005). Hornberger et al. (2004) and
Brezger et al. (2003) discussed how the useful range of
molecular velocities for a TLI gets severely restricted for
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large molecules or small gratings. Van der Waals interac-
tions also set a minimum mechanical grating period for
Sagnac gyroscopes. For a large Sagnac response factor,
one would naturally select small grating periods. How-
ever, Van der Waals interactions cause the uncertainty
of a Sagnac rotation sensor to increase if grating periods
smaller than 44 nm are used with 1000 m/s Na atoms.
For helium atoms, which have much weaker vdW inter-
actions, the optimum grating period for a rotation sensor
is 8 nm, about ten times smaller than current practice.
This is discussed for a MZI by Cronin et al. (2005).

These limitations from grating bars and Van der Waals
interactions have lead to proposals for Talbot-Lau in-
terferometers for large molecules based on light gratings
(Brezger et al., 2003). If the particle’s size is a large frac-
tion of the wavelength, the light forces will have gradients
inside the particle that will excite the collective oscilla-
tions of the particle unless the turn on/off time extends
over many periods of oscillation. For even larger homoge-
neous particles the light force averages out to nearly zero.
This can be overcome by localizing the interaction [e.g.
with a color center (Hornberger et al., 2004; Nairz et al.,
2001)] or by making particles with periodic structure on
the scale of the wavelength. Nevertheless the question
of how much internal excitation will occur still remains
to be answered. Finally, it should be possible to impart
lots of momentum with long wavelength photons by using
multi-photon processes.

B. Decoherence

Quantum mechanics makes assertions so at odds with
everyday experience, that the mechanisms by which a
quantum mechanical treatment of macroscopic objects
reduce to purely classical behavior have long been con-
sidered a fascinating topic. Indeed wrestling with this
problem has led a number of scientists to make radi-
cal suggestions for changes in quantum theory itself (e.g.
spontaneous projection, pilot wave, etc.) or the nature of
reality (many worlds, etc.). Observation of decoherence,
and the suppression, avoidance, control and correction of
decoherence mechanisms is a busy field made especially
topical by the fruits of, and need for, advances in quan-
tum computation and nanotechnology.

Atom interefrometry is based on coherence and there-
fore is sensitive to interactions that upset this coher-
ence. Relative to neutrons, atoms have large polariz-
ability, magnetic moment, and scattering cross sections
and are therefore both more sensitive to, and easy to
use as quantitative probes for, decoherence processes. In
this section we discuss atom interferometry’s historical
role in gedanken experiments about quantum uncertainty
and its present role in providing an environment in which
clean quantitative tests of decoherence is possible.

1. Interference and ‘Welcher Weg’ information

Perhaps the first general realization about interference
fringes was that they can easily be destroyed by inter-
actions that, even in principle, allow one to determine
which path an atom took through the interferometer.
This is deeply rooted in Bohr’s principle of complemen-
tarity which forbids simultaneous observation of the wave
and particle behaviors. It is best illustrated in the debate
between Einstein and Bohr on the question ‘can one know
which path the particle took and still observe the inter-
ference of the waves?’ (Bohr, 1949; Wooters and Zurek,
1979). Einstein proposed the famous recoiling-slit ex-
periment to gently measure which path the particle took
through a two-path interferometer. In reply Bohr pointed
out that the slit itself must also obey the laws of quan-
tum mechanics and therefore is subject to the Heisenberg
uncertainty principle. He showed quantitatively that if
the initial momentum of the slit-assembly is known well
enough to permit the recoil measurement of which path
the particle took, then the initial position of the slit must
have been so uncertain that fringes would be unobserv-
able.

According to Feynman, this experiment “has in it the
heart of quantum mechanics. In reality it contains the
only mystery.” (Feynman et al., 1965). (Subsequently
Fenyman acknowledged that entanglement was another
mystery.) In 1960, Feynman proposed a related gedanken
experiment in which a perfect light microscope (i.e. one
fundamentally limited by Heisenberg uncertainty) is used
to determine “which-way” information in a two-slit elec-
tron interferometer by analyzing a single scattered pho-
ton (Feynman et al., 1965). In Feynman’s analysis of this
gedanken experiment, electron interference (a manifestly
wave-like behavior) is destroyed when the separation of
the interfering paths exceeds the wavelength of the probe
(i.e. when it is possible to resolve on which path the elec-
tron traversed). In fact the contrast is lost whether or
not anyone actually looks with the microscope; the abil-
ity in principle to identify the electron’s path is enough
to destroy the interference pattern. Feynman concludes,

“If an apparatus is capable of determin-
ing which hole the electron goes through, it
cannot be so delicate that it dos not disturb
the pattern in an essential way.”

More recently, a quantitative duality relation was de-
rived by (Jaeger et al., 1995) and (Englert, 1996) to
quantify how much ‘which-path’ knowledge (K) can be
obtained and how much contrast (C) can be observed at
the output of an interferometer.

K2 + C2 6 1 (26)

It is based on the analysis of a detector that quantifies
how well the two paths can be distinguished. The
detector could be similar to Feynman’s light micro-
scope, as studied theoretically by Geotsch and Graham
(1996); Holland et al. (1996b); Stern et al. (1990);
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Steuernagel and Paul (1995); Tan and Walls (1993);
Tegmark (1993); Wiseman et al. (1997) and exam-
ined experimentally by Chapman et al. (1995b);
Clauser and Li (1994b); Kokorowski et al. (2001);
Mei and Weitz (2001). Alternatively the detector
could monitor spin polarization or the internal state
of atoms as proposed by Scully et al. (1991), discussed
by (Badurek and Rauch, 2000; Englert et al., 2000;
Luis and Sanchez-Soto, 1998) and examined experi-
mentally by Durr et al. (1998a,b); Durr and Rempe
(2000a). We also note the similarity with many neutron
spin-superposition experiments (Badurek et al., 1983,
1988; Bonse and Rauch, 1979; Summhammer et al.,
1983).

Modern decoherence theories no longer invoke Bohr’s
collapse postulate, and they do not rely on the uncer-
tainty principle. Instead they treat quantum systems
(such as atoms in an interferometer) as being coupled
to their environment (including the which-way detector)
together as one combined (open) quantum system. In
this view, the interaction between the observed quantum
system and its (quantum) environment is a unitary pro-
cess that causes entanglement so that the state of the
observed quantum system becomes correlated with the
quantum state of the environment. Then a measurement
made on the environment allows inferences on the quan-
tum system. For example, if a photon in the environ-
ment allows an inference of which path the atom took,
then a trace over the environment would reduce the co-
herence remaining in the atom density matrix, even if
the coupling interaction were now turned off. For more
details we refer the reader to a set of excellent articles
by Joos and Zeh (1985); Tan and Walls (1993); Tegmark
(1993); Zurek (1991, 2003) and books by Giulini et al.
(1996) and Wheeler and Zurek (1983)

Since atoms couple strongly to electromagnetic fields
in a well-understood way, atom interferometers provide
ideal tools for studying decoherence.

2. Internal state marking

The simplest way of measuring an atom’s ‘path’
through the interferometer is by marking it with an in-
ternal state of the atom. This is analogous to an interfer-
ometer for light where the polarization is rotated in one
arm. Measuring the internal state of the atom then de-
termines which path it took, and consequently destroys
the interference.

For example, Durr et al. (1998a,b) studied the com-
plementary nature of fringe contrast and path informa-
tion by using atoms prepared in a superposition of inter-
nal states before they pass through an interferometer for
their external (center of mass) states. The interferometer
was based on Bragg diffraction gratings that affect the in-
ternal states differently so that the interferometer paths
became correlated with internal states. This caused a
controllable amount of contrast loss, based on how well

the internal states labeled which path the atom took.
These experiments are very similar to earlier neu-

tron interferometer experiments where loss of interfer-
ence caused by correlations between spin polarization
and interferometer path was studied (Badurek et al.,
1983). In both the atom and neutron experiments the
coherence can be retrieved (Durr and Rempe, 2000a,b;
Summhammer et al., 1983) by projecting the internal
state vector onto a measurement basis that does not allow
one to distinguish the encoded internal states. The path
information is thereby erased and the full interference
contrast regained. This is a nice demonstration that in-
terference will be lost if the internal states contain which-
path information; the loss of interference occurs without
invoking any coupling to an external environment.

To substantiate that there is no coupling to the envi-
ronment, note that the transitions to prepare the internal
state label are driven with microwave fields that are in co-
herent states with large photon number uncertainty, and
hence one can not use a measurement of the microwave
field itself to get information about whether the atom
absorbed a single photon on the labeled path. Thus no
information about the internal state is transferred to the
environment. The coherence is not really gone, it is hid-
den behind the choice of what to measure (interference or
path). One can easily get it back by rotating the basis for
the measurement, so that the ‘which path information’
is erased, as it was done in the beautiful experiments by
Badurek et al. (1983); Durr and Rempe (2000a,b).

This is different from the decoherence described by the
recoiling slit or Feynman’s microscope discussed above.
There one has to look into the environment to get the
coherence back. One has to find the other part of the
entangled state.

3. Coupling to an environment

We now discuss situations in which the interferometer
looses coherence because of coupling to the environment.
It is closely related to modern theories of decoherence as
will become obvious. As an example, consider that the
initial state involves an atom traversing an interferome-
ter and a well-collimated photon incident on the atom;
then the final state may involve an atom at the detector
and a photon in the environment traveling toward infin-
ity. This is a prototypical example of an interferometer
that becomes entangled with an external environment or
particle. The interaction and its strength is well known,
but the final state is unknown.

a. Decoherence in Diffraction Several experiments have
demonstrated decoherence due to spontaneous emission
of light quanta. Gould et al. (1991); Keller et al. (2000);
Pfau et al. (1994) used atom diffraction patterns caused
by diffraction from a grating to observe how the spatial
coherence of an atom beam gets reduced by spontaneous
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emission of a photon. A good picture is that the recoil
from the spontaneously emitted photon shifts the mo-
mentum of each atom randomly, along with its individual
diffraction patterns. Since the direction of the final pho-
ton is random, these experiments revealed a decrease of
contrast of the summed patterns. There was a transition
from diffraction to diffusion with increasing probability
of spontaneous emission. In a similar spirit, the visibil-
ity in the diffraction patterns of fullerenes C60 and C70

has been used to bound the amount of decoherence for
the molecule waves caused by emitting thermal photons
(Hackermuller et al., 2004).

All of these experiments can be perfectly explained by
the random momentum kicks given by the spontaneously
emitted photons. Interestingly the result is the same re-
gardless of the place of the photon emission, as long as it
is at or upstream of the grating. Consequently the effect
is the same as if the incident beam had a wider transverse
momentum distribution, with associated smaller trans-
verse coherence length.

b. Decoherence in Talbot Lau interferometer In a three
grating Talbot Lau interferometer, Clauser and Li
(1994b) showed that resonant laser light scattered from
atoms in the middle of the interferometer can destroy
fringe contrast. This experiment actually detected the
fringes by selectively destroying the contrast for different
velocity classes that were Doppler shifted into resonance
with a laser beam.

More recently, but in a similar spirit, Mei and Weitz
(2001) demonstrated that photon scattering in a multi-
ple beam Ramsey interferometer also leads to decoher-
ence for the atoms that scatter light. Furthermore, be-
cause some of the multiple paths in this experiment cause
fringes that are out of phase with the other two-path com-
binations, it was shown that decoherence of one beam can
either increase or decrease the net contrast.

Hackermuller et al. (2004) observed decoherence of in-
ternally hot Fullerene matter waves caused by emission
of radiation in a Talbot-Lau interferometer. This exper-
iment is remarkable, since the emission spectrum of the
hot Fullerene is very close to thermal radiation, and in
that sense looks more like a (mesoscopic) classical par-
ticle which ‘cools’ internally by emitting photons during
the flight in the TLI.

All of these experiments can again be perfectly ex-
plained by the (classical) random momentum kicks given
by the spontaneously emitted photons.

c. Photon scattering in an Interferometer Chapman et al.
(1995b) studied the loss of coherence in a Mach-Zehnder
interferometer when each atom scattered exactly one
photon. Loss of contrast was observed which depended
on the separation between the two interferometer paths
at the point of photon scattering. This is a close real-
ization of Feynman’s gedanken experiment, and we will
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FIG. 35 (color online) Comparison of decoherence from pho-
ton scattering (left) to gas particle scattering (right). Con-
trast and atom beam intensity are reported as a function of
the resonant laser beam power or background gas pressure.
The light scattering occurs where the separation d = 0.16λph,
and the gas scattering occurs throughout the interferometer.
The theoretical curves come from equation 33 for the detected
atoms as discussed below. Figure from (Uys et al., 2005).

discuss it below in detail.

d. Scattering from background Gas in an Interferometer

Scattering from a background gas of massive atoms
or molecules has also been used to cause a controlled
amount of decoherence. Collisional decoherence was ob-
served by Hackermuller et al. (2003a); Hornberger et al.
(2003) with Talbot-Lau atom interferometer, and simi-
lar work with a Mach-Zehnder interferometer (Uys et al.,
2005) is shown in Figure 35.

It is interesting to note the difference between the de-
coherence due to photon scattering and atom scattering.
The basic physics processes are very similar, except that
the momentum transfer is much much larger in the case of
the atoms and many of the ‘collisions’ lead to the atoms
being scattered out of the detected beam. Consequently
the loss of contrast in atom collisions is not so bad, but
the overall intensity goes down significantly. In addi-
tion the atom-atom scattering is a probabilistic process,
whereas the photon scattering can be made deterministic
(see (Chapman et al., 1995b)). Additional theory work
on collisional decoherence with massive particles can be
found in (Fiete and Heller, 2003; Hornberger and Sipe,
2003; Hornberger et al., 2004; Kleckner and Ron, 2001;
Vacchini, 2004).

Closely related to these atom scattering decoherence
experiments are the studies of stochastic or deterministic
absorption and its effect on coherence in neutron interfer-
ometers (Namiki et al., 1993; Rauch and Summhammer,
1992; Summhammer et al., 1987, 1988).
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FIG. 36 Schematic for the photon scattering decoherence
experiment in (Chapman et al., 1995b; Kokorowski et al.,
2001). The path separation, d, and the number of photons
scattered per atom can both be controlled.

4. Realization of Feynman’s gedanken experiment

Scattering a single photon from an atom in superposi-
tion of two locations, is one of the icons of decoherence ex-
periments. It is directly related to Feynman’s gedanken
experiment discussed above. To realize such an exper-
iment Chapman et al. (1995b) scattered single photons
from atoms within a two-path mach Zehnder atom inter-
ferometer (Fig. 36). Exactly one photon was scattered
by adjusting a tightly focused laser beam so that each
traversing atom made exactly half a Rabi cycle, exiting
the laser beam in the excited state. To achieve this the
transit time of the atoms through the excitation laser
(Ttrans ∼ 5ns) was much shorter then the lifetime of the
excited state (τ ∼ 16ns). Translating the laser beam
along the interferometer caused excitations at different
locations corresponding to different spatial separations
of the interfering atom waves.

The experimental results are displayed in Fig. 37.
The contrast (which is a direct measure of coherence)
decreases smoothly towards zero as the distance be-
tween the two paths grows to d = λ/2. At this point,
the separation between paths is equal to the Heisen-
berg microscope resolution. The observed contrast re-
currences at d > λ/2 have their mathematical ori-
gin in the Fourier transform of the dipole pattern for
spontaneous photon scattering (Geotsch and Graham,
1996; Holland et al., 1996b; Steuernagel and Paul, 1995;
Tan and Walls, 1993). Feynman, who might be surprised
at their existence, would be reassured to note that they
occur where the prominent diffraction rings of a perfect
light microscope would lead to path ambiguity.

The specific arrangement of the experiment allowed
separation of the effects of the (classical) momentum
transfer and the entanglement between the atom at two
locations and scattered photon and the related phase
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FIG. 37 Contrast as a function of the path separation, d, at
the location of scattering. Each atom scattered nearly exactly
one photon in this experiment (Chapman et al., 1995b).

shift. As seen in Figure 36 the average shift of the pattern
at the 3rd grating, and its random variation from the re-
coil of the emitted photons is much larger then the period
of the interference pattern at the 3rd grating (∼ 30µm vs.
200 nm). This demonstrates that the momentum recoil
by itself can not explain the loss of contrast (as it can in
the diffraction experiments), but the path separation at
the point of scattering and the phase shift imprinted by
the entanglement in the scattering process must also be
taken into account.

The classical recoil shift also allowed a second “recoher-
ence” experiment by allowing the experimenters to infer
the momentum of the scattered photon by measuring the
atomic recoil. Interference contrast could be regained
(Fig. 38) by selecting atoms within a reduced range of
momentum transfer. The modern interpretation is that
coherence lost to teh environment because of entangle-
ment can be regained by learning about the environment.
Feynman might say: By restricting the momentum, the
microscope could not use the full 4 π acceptance but
only a much smaller numerical aperture. Consequently
the maximum obtainable resolution would be degraded,
no ‘which path’ information obtained, and the interfer-
ence contrast thereby regained. This experiment demon-
strated the importance of correlations between the recoil
momentum and the phase of interference fringes.

These experiments nicely illustrate how the interaction
with an environment causes decoherence through entan-
glement with the states of the environment. If an atom
in the two-path interferometer, with the paths separated
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FIG. 38 Relative contrast and phase shift of the interferome-
ter as a function of d for the cases in which atoms are corre-
lated with photons scattered into a limited range of directions.
The solid curves are calculated using the known collimator
geometry, beam velocity, and momentum recoil distribution
and are compared with the uncorrelated case (dashed curves).
The upper inset shows atomic beam profiles at the third grat-
ing when the laser is off (thin line) and when the laser is on
(thick line). The arrows indicate the third grating positions
for cases I and II. The lower inset shows the acceptance of the
detector for each case, compared to the original distribution
(dotted line). (Chapman et al., 1995b).

by d, scatters a photon the quantum state evolves into:

∣

∣ψ
〉

i
=

(

|x〉+ |x+ d〉
)

⊗ |e0〉 interaction−→
∣

∣x
〉

⊗
∣

∣ex

〉

+
∣

∣x+ d
〉

⊗
∣

∣ex+d

〉

, (27)

where |e0〉 is the initial wave function of the environment
(photon) and |ex〉 is the post-interaction wave function
of the environment (photon) given an atom at position
x.

If the environment is now observed to be in state |ex〉,
the (unnormalized) state of the atom becomes:

∣

∣ψe

〉

=
∣

∣x
〉

+ β(d)
∣

∣x+ d
〉

, (28)

where

β(d) = 〈ex|ex+d〉. (29)

If the two environment states are nearly identical then
|β(d)| ≈ 1; very little which-way information is available

in the measured state of the environment, and the atom
is left in nearly the original superposition. If |β(d)| ≪ 1,
significant which-way information about the atom has
been left in the environment, and the atom is highly
likely, with probability (1 + |β(d)|2)−1, to be found in
state |x〉.

Whereas Equation 28 gives the atomic state condi-
tioned on an observation of the environment, we often
want to find the final quantum state of the atom when
the environment is not observed. This requires averaging
over all possible environment states, obtained by taking
the trace of the atom+environment density matrix over
environment degrees of freedom. Applied to the atom
interferometer, this procedure results in a reduction of
contrast by a factor |β(d)| for every photon scattered,
and can be directly applied to describe the results of the
Feynman gedanken experiment (Chapman et al., 1995b).

Focusing on the which-way information carried away
by the scattered photons is not the only way decoher-
ence may be understood. An alternative, but completely
equivalent picture involves the phase shift between the
two components of the atomic wave function. We switch
to this viewpoint by using the translation operator for

photon momentum states (T̂ (~x) = eik̂·~x) to identify that
the environment states are related by

〈kf |ex+d〉 = 〈kf |ei(k̂f−~ki)·~d|ex〉 (30)

where the momentum of the absorbed photon ~ki was as-
sumed to be precisely defined by the incident laser beam.
Thus, if one were to measure the momentum of the scat-

tered photon (to be ~kf ) the atom would then be found
in a superposition state with known phase shift between
the two components of

∆φ = (~kf − ~ki) · ~d. (31)

Interference fringe patterns for atoms with different recoil
momentum kicks will then be slightly out of phase and
the ensemble average - the measured interference pattern
- will have a reduced contrast. This point of view is useful
to calculate

β(d) = 〈ex|ex+d〉 =

∫

d~kf e
i(~kf−~ki)·~d|〈kf |ex〉|2. (32)

This is a scaled Fourier transform of the probability dis-
tribution P (∆k).

We have discussed two views (which-way and dephas-
ing) of the decoherence that accrues when an atom in an
interferometer scatters photons. They correspond to two
different ways to describe the scattered photon. (posi-
tion basis vs. momentum basis). In these two cases, an
observer in the environment can determine either which
path the atom took, or else the phase shift of its fringe
pattern. The key point is that when the experimenter
is completely ignorant of the state of the scattered pho-
tons, whether an apparatus has been set up to measure
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them or not, the “which-path” and phase diffusion pic-
tures are equally valid (Stern et al., 1990). Both predict
decoherence, i.e. loss of contrast.

Building upon the simple framework of the single-
photon which-way experiment, we can easily derive
the effect of continuous atom-light interaction involving
many scattered photons. If successive scattering events
are independent, the total decoherence function includes
one factor of β for each scattered photon (with probabil-
ity Pn of scattering n photons). If the separation does not
change (d=constant) one obtains a very simple relation:

βtotal(d) =

∞
∑

n=0

Pnβ(d)n. (33)

Even at small separations each successive photon scatter-
ing found in |ex〉 (|ex+d〉), will reduce by a small factor
the probability that the atom is in state |x+ d〉 (|x〉) un-
til only one component of the superposition has any re-
maining amplitude; that is, until “complete” which-path
information has been obtained.

This was nicely demonstrated in the experiment by
Kokorowski et al. (2001) studying scattering multiple
photons from each atom inside the interferometer at
a location where the separation is small compared to
the light wavelength. The contrast vanishes as infor-
mation about which path each atom took in the in-
terferometer gradually becomes available in the photon
field as a result of multiple scattering events. These ex-
periments are also discussed in (Pritchard et al., 1998,
2001; Schmiedmayer et al., 1997) and extended to in-
clude two separated environments inside the interferom-
eter by Cronin et al. (2003).

Multiple photon scattering results in a Brownian mo-
tion of the phase of the atomic superposition and can
be analyzed as phase diffusion. It leads again to an ex-
ponential decay of contrast as a function of time (i.e.
the average number of scattered photons n̄). Taking the
specifics of the photon scattering process one finds, in
perfect agreement with the experiment, a Gaussian loss
of contrast as a function of the path separation d.

C

C0
=

〈

eiφ
〉

= e−n̄(d·σk)2/2 (34)

where, σk is the RMS spread in momentum per scattered
photon.

Contrast loss due to scattering multiple photons makes
contact with more formal theories that describe the dy-
namics of open quantum systems. A modified Heisenberg
equation of motion for the density matrix has been de-
rived for various environments by (Caldeira and Leggett,
1983; Dekker, 1981; Gallis and Fleming, 1990; Gallis,
1993; Hornberger et al., 2004; Joos and Zeh, 1985;
Omnes, 1997; Tegmark, 1993). For example, an envi-
ronment that causes the probability of scattering waves
with wavelength λeff in an infinitesimal time interval dt
to be Λdt (where Λ = Flux × cross section), makes the

master equation

∂ρ(x, x′)

∂t
= − i

~
[H, ρ(x, x′)]− Λ(x− x′)2

λ2
eff

ρ(x, x′) (35)

where the final term on the right causes a damping of the
off-diagonal elements of ρ with a rate expressed by

ρ(x, x′; t) ≈ ρ(x, x′; 0)e
−Λ(x−x′)2

λ2
eff

t
. (36)

Here (x − x′) denotes the separation of the superposi-
tion states in a general coordinate basis, and the diffu-
sion constant ∆ = Λ/λ2

eff is also referred to as the lo-

calization rate (Joos and Zeh, 1985), or the decoherence
rate (Tegmark, 1993). Values of decoherence rates are
tabulated in (Holland et al., 1996b; Joos and Zeh, 1985;
Tegmark, 1993) for various systems and scattering envi-
ronments. Comparing equations 34 and 36 allows one to
discuss the localization rate caused by photon scattering
for atoms in an interferometer.

5. Realization of Einstein’s recoiling slit experiment

To implement Bohr’s original design of Einstein’s re-
coiling slit Gedanken experiment, one needs a very light
beam splitter, which shows quantum properties and will
allow an experimenter to distinguish the two possible
paths taken. In a Ramsey experiment, one would need
to be able to distinguish the photons in the microwave
or optical field used to change the state in the first in-
teraction region. As discussed above, classical fields can
not do the job. But if the splitting in the first inter-
action region is induced by a vacuum field, or a single
photon field (more generally a field with a definite pho-
ton number) then measuring the field will determine if a
transition has happened, and consequently infer the path
the atom took.

In their seminal experiment Bertet et al. (2001) im-
plemented a Ramsey interferometer with Rydberg atoms
where the first interaction zone is a high-Q cavity which
allows the superposition between the |e〉 and |g〉 states to
be created by the interaction with the vacuum field inside
the cavity. This is the ultimate light beam splitter. After
passing the interaction region, the atom-cavity system is
in an entangled state described in the |atom〉|cavity〉 ba-
sis:

|e〉|0〉 → 1√
2

[

eiΦ|e〉|0〉+ |g〉|1〉
]

, (37)

where Φ is an phase difference between the two states
after the interaction.

With this interaction the information about the state
of the atom is left in the cavity field, and no interfer-
ence contrast is observed when completing the Ramsey
interferometer with a classical microwave pulse and state
selective detection.



40

FIG. 39 Fringe contrast as a function of the mean photon
number N in R1. The points are experimental. The line rep-
resents the theoretical variation of the modulus of the beam-
splitter final-states scalar product. (Bertet et al., 2001).

The cavity can also be filled with a very small coherent
state |α〉 with a mean photon number of a few (n̄ = |α|2.
The interaction region creates the entangled sate:

|e〉|αe〉 →
1√
2

[

eiΦ|e〉|αe〉+ |g〉|αg〉
]

, (38)

with

|αe〉 =
√

2
∑

n

Cn cos(Ω
√
n+ 1tα)|n〉 (39)

|αg〉 =
√

2
∑

n

Cn cos(Ω
√
n+ 1tα)|n+ 1〉 (40)

where tα is an effective atom-cavity interaction time ad-
justed to give a equal superposition between |g〉 and |e〉.

The results of such an experiment are shown in Fig-
ure 39. When employing the lightest beam splitter, that
is the vacuum state with n=0, the contrast in the Ram-
sey interferences vanishes completely. When employing
successively stronger coherent states, the beam splitter
becomes ‘heavier’ in Bohr’s argument, and the coherence
comes back. For n̄ = 12.8 (|α| = 3.5) nearly the full
interference contrast is regained.

In a second part of their experiment Bertet et al.
(2001) employed the same field twice. Once as first inter-
action region, and again as second interaction region. In
this case even for the vacuum field as a beam splitter no
information about the path within the Ramsey interfer-
ometer remains, and full contrast was observed. This is a
beautiful illustration of an unconditional quantum-eraser
experiment.

As our understanding of quantum mechanics deepens,
and in particular, as we attempt to exploit quantum me-
chanics to create more sensitive quantum interferome-
ters, quantum computers, or perfectly secure commu-
nication channels based on quantum entanglement, we

encounter decoherence as a fundamental limit (Unruh,
1995). Progress relies therefore upon understanding
and correcting for decoherence effects. Already our in-
creased understanding of what decoherence means and
how to control it has led to the development of quan-
tum error correction codes (Calderbank and Shor, 1996;
Shor, 1995; Steane, 1996) and quantum mechanical sys-
tems in which certain degrees of freedom are intrinsically
decoherence-free (Lidar et al., 1998).

C. Origins of phase shifts

Phase shifts for interference fringes (see Section
II. B. Equation 16) can be induced by photon scattering
as discussed in the previous section (Eq 31), or by a va-
riety of other causes such as 1. different potential energy
for atoms in each path of the interferometer, 2. transverse
or longitudinal forces on atoms, 3. inertial displacements
such as rotating or accelerating the interferometer plat-
form, and 4. geometric and topological phase shifts such
as the Aharonov-Bohm, Aharonov-Casher, and Berry
phase. In the following section we discuss the interre-
lationship between these types of phase shifts.

1. Dynamical phase shifts

Feynman’s path-integral formu-
lation (Feynman and Hibbs, 1965;
Storey and Cohen-Tannoudji, 1994) relates the wave
function at (x, t) to the wave function at (x0, t0) by

ψ(x, t) = e−
i
~

SΓψ(x0, t0) (41)

where the classical action SΓ is defined in terms of the
Lagrangian

SΓ ≡
∫

Γ

L[ẋ, x] dt (42)

and L[ẋ, x] is the Lagrangian and Γ is the classical path
from (x0, t0) to (x, t). For potentials that are only a
function of position, the wave function acquires a phase
shift due to a potential U(r) of

φint =

∫

[

√

2m

~2
[E − U(r)] −

√

2m

~2
E

]

dl. (43)

This is analogous to light optics where the wave vector
k = n(r)k0 depends locally on the index of refraction,
and the phase shift due to the index is

φ =

∫

(k − k0)dl. (44)

To first order in U/E the interaction phase shift (43) is

φint ≈ −
1

~v

∫

Γ

U(r)dl (45)
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where v is the particle’s velocity.

This brings up the question, ‘when does one measure
a quantity described by classical physics like a deflec-
tion, and when does one measure a quantity only ob-
servable in an interference experiment?’. For example,

applying a classical force, ~F , to change a particle’s mo-
tion is identical to applying a phase gradient to the mat-
ter wave. This is because force can be viewed as arising

from a potential gradient [~F (r) = −~∇U(r)], and in the
same potential U(r) a propagating matter wave will get a
position-dependent phase shift which is exactly the one
needed to account for the deflection. If there are two
paths through the interferometer, then the fringe phase
shift will be given by

∆φint = φint1 − φint2. (46)

Thus, in a classical apparatus (as in a moiré deflectome-
ter) or in an interferometer, forces cause a fringe shift
that is identical to the classical deflection, which can be
observed as an envelope shift (Oberthaler et al., 1996b;
Zeilinger, 1986).

On the other hand, there are many cases where the
fringe shift is different from the envelope shift. A basic
example is a constant potential applied to one arm of an
interferometer with separated beams. In this case there is
no classical deflection, because neither atom (component)
acquires a transverse phase gradient. Still, there is a
different interaction phase φint for one path through the
interferometer because of the potential. For example, one
interferometer path may traverse a capacitor such that
the gradient in potential energy is along the atomic path.

In this case Longitudinal phase gradients can be caused
as atoms enter and exit the interaction region. For ex-
ample, an attractive potential causes a classical force
that first accelerates then decelerates the atom (compo-
nent); If the potential is confined to one path through
the interferometer then the affected atom component
gets displaced ahead of the unperturbed atom compo-
nent. Furthermore, if the longitudinal displacement be-
tween wave function components exceeds their coherence
length, then contrast is lost. We prefer to call this ‘inho-
mogeneous broadening’ (as opposed to decoherence) be-
cause the phase shift is correlated (entangled) with the
atom’s own longitudinal velocity.

Another interesting case arises when one applies a
time-dependent potential to one arm of the interferome-
ter so the atom never sees a gradient in space. An exam-
ple is the scalar Aharonov Bohm effect. Then there will
be no change in the classical motion and the envelope of
the atomic probability distribution will remain stationary
as high-contrast fringes (there is no velocity dispersion)
shift underneath. A similar situation arises when purely
topological phases are involved. In these cases the full
quantum mechanical properties of an interferometer are
in evidence.

2. Aharonov-Bohm and Aharonov-Casher effects

We call a phase shift ∆φint topological if it neither
depends on the incident k-vector (velocity) of the inter-
fering particle nor on the shape of the particle’s path
through the interferometer. Topological phases are char-
acteristic of all gauge theories, and are related to a sin-
gularity enclosed by the interferometer paths.

The most widely known topological phase was de-
scribed by Aharonov and Bohm (1959) for a charged par-
ticle passing on either side of a solenoid. A related ef-
fect was described by Aharonov and Casher (1984) for
a magnetic dipole encircling a line of charge. To real-
ize a general framework for the discussion of the quan-
tum interaction between sources and fields we consider
Fig. 40. If an electric charge qe circulates around a mag-
netic dipole dm (or vice versa) then a quantum phase
arises (Aharonov and Casher, 1984). Particular configu-
rations of sources can give a variety of contributions. For
example, a cylinder filled with aligned magnetic dipoles is
equivalent to a solenoid, and creates a homogeneous mag-
netic field inside the cylinder but zero magnetic field out-
side. When an electric charge travels around the cylinder
it acquires a phase due to the Aharanov-Bohm effect. On
the other hand, if a cylinder is filled with electric charges,
then a magnetic dipole circulating around it will obtain a
quantum phase due to the Aharonov-Cahser effect. This
can be generalized to the case of a magnetic dipole mov-
ing in the presence of a gradient of electric field.

Employing electromagnetic (EM) duality it is possible
to obtain a series of similar phenomena. While the charge
dual is the magnetic monopole, qm, which has never been
observed, the dual of the dipoles are well defined. The in-
teractions between an electric dipole, de, and a monopole
(or a monopole-like field) have been extensively stud-
ied in the literature (Casella, 1990; Dowling et al., 1999;
He and McKellar, 1993; Spavieri, 1999, 2006; Wilkens,
1994). This can also be equivalently viewed as the inter-
actions of an electric dipole, de, with an inhomogeneous
magnetic field. It should be understood that this cat-
egorization, instructive as it may be, is not unique nor
exhaustive, e.g. quadrupole interactions have not been
considered.

The Aharonov-Bohm phase shift is

∆φAB =
qe
~

∮

A · ds (47)

where A is the vector potential that represents the fields.
The Aharonov-Casher effect causes a phase shift

∆φAC =
1

~c2

∮

dm ×E · dr (48)

where dm is the magnetic dipole.
The Aharonov-Casher effect was observed with neu-

tron interferometers (Cimmino et al., 1989) using the
original geometry proposed by (Aharonov and Casher,
1984), and the phase shift was 2.19 mrad. With TlF
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FIG. 40 The Aharonov-Bohm effect, Aharonov-Casher effect
and their electromagnetic duals. Figure from Janis Panchos
(unpublished); see also (Dowling et al., 1999).

molecules the Aharonov-Cahser effect has been observed
using a geometry where components of each molecule
with different spin states occupy the same center of mass
location (Sangster et al., 1993, 1995). This alternative
geometry for the Aharonov-Casher effect, in which the
magnetic dipoles are placed in a superposition of spin ori-
entations (but not a superposition of center of mass posi-
tions) was described by (Casella, 1990). The two different
geometries are summarized in Figure 41. With molecules
possessing a nuclear magnetic moment the phase shift
was only 3 mrad. Still, this was sufficient to verify the
predicted linear dependance on the electric field and in-
dependence of particle velocity. Atomic sized magnetic
moments were used by (Gorlitz et al., 1995) to demon-
strate a much larger Aharonov-Caher phase shift of 300
mrad using Rb atoms. An A-C phase of 150 mrad was ob-
served by (Yanagimachi et al., 2002) using Ca atoms, and
related measurements are found in (Zeiske et al., 1994,
1995).

The AC phase is a restricted topological phase be-
cause although the phase is independent of the speed
|v| and the size of the interferometer loop, the phase
does depend on whether dm is perpendicular to both v

and E. Debate over the topological nature of the AC
effect has stimulated several discussions, among them
(Aharonov et al., 1988; Boyer, 1987; Han and Koh, 1992;
Lee, 2001; Zeilinger et al., 1991). The similarity between
the AC and AB effects has also been discussed in de-
tail by (Hagen, 1990; Oh et al., 1994). One controversy
arose over the question of whether or not a sufficiently
large AC phase can lead to decoherence. This position
was suggested by (Boyer, 1987) since the AC effect can
be explained in terms of a classical force due to a motion-
induced magnetic field in the rest frame of the magnetic
dipole. However, as was shown in (Zeilinger et al., 1991),
since the classical force depends on velocity a wave packet
envelope does not get shifted; i.e. ∂φAC/∂kdB = 0. The

FIG. 41 Aharonov-Casher effect. (a) Geometry of the orig-
inal measurement using a neutron interferometer, in which
the two interfering states encircle a charge and have the same
magnetic moments. (b) Geometry used in (Sangster et al.,
1993). Particles travel in a uniform magnetic field in a coher-
ent superposition of opposite magnetic moments ±µσ̂. the
two states are oppositely shifted by the Aharonov-Cahser
phase as they travel through the field. Figure and caption
reproduced from (Sangster et al., 1993).

AC effect and AB effect both shift the phase of the wave
function, but do not displace the wave packet envelope
(a common miss-impression, e.g. see Figs 15-7 and 15-8
of the Feynman et al. (1965) Lectures in Physics Vol II).

The scalar Aharonov-Bohm effect (SAB) for neutral
particles is a topological phase that can arise from pulsed
magnetic fields interacting with an atomic magnetic
dipole. This has been observed by (Aoki et al., 2003;
Muller et al., 1995; Shinohara et al., 2002) with atoms,
and by (Allman et al., 1992; Badurek et al., 1993) with
neutrons. It is similar in spirit to the interaction dis-
cussed in the original paper (Aharonov and Bohm, 1959)
for electrons interacting with the scalar electrostatic po-
tential.

The electromagnetic dual of the AC effect, in which
an electric dipole moment moves near a line of mag-
netic monopoles (an idealized picture of an experiment)
was investigated theoretically by (Wilkens, 1994). The
phase shift for polarizable particles moving in both elec-
tric and magnetic fields has been also discussed by
(Anandan, 1989, 2000; Audretsch and Skarzhinsky, 1998;
Shevchenko, 1995). Furthermore, in the case that perma-
nent electric dipole moments are used, the electromag-
netic dual to the AC effect can be used to settle any
controversy regarding how the topological nature of the
AC effect depends on the dipole moment being intrinsic
and therefore having quantum fluctuations (Lee, 2001).

3. Berry phase

Phase effects resulting from parallel transport associ-
ated with adiabatic evolution (Berry phase) can also be
topological. Berry (1984) showed that a quantum system
in an eigen-state that is slowly transported round a cir-
cuit by varying parameters R in its Hamiltonian H(R)
will acquire a geometrical phase factor in addition to the
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FIG. 42 Ramsey fringes under (a) a constant magnetic field
and (b) a rotating magnetic field. The rotating angle is π
radians. The phase difference is observed at the center fre-
quency of the spectra. Figure and caption reproduced from
(Yasuhara et al., 2005).

familiar dynamical phase. For example, the Berry phase
of a magnetic moment adiabatically following a magnetic
field will acquire a phase proportional to the solid angle
proscribed by the field during a closed circuit. Berry also
interpreted the Aharonov-Bohm effect as a geometrical
phase factor.

The Berry phase can be studied with many systems in
physics. It has been observed with light in a coiled opti-
cal fiber (Chiao and Wu, 1986), neutron interferometers
(Bitter and Dubbers, 1987), nuclear magnetic resonance
experiments (Suter et al., 1987), nuclear quadrupole res-
onance experiments (Tycko, 1987), and also mesoscopic
electronic systems (Yau et al., 2002). Phase shifts due to
non-adiabatic circuits (Aharonov and Anandan, 1987),
incomplete circuits (Samuel and Bhandari, 1988), par-
ticles in mixed states (Sjoqvist et al., 2000), and parti-
cles moving relativistically have also been studied the-
oretically. For an overview on geometric phases see
(Anandan et al., 1997; Wilczek and Shapere, 1989).

An observation of a Berry phase in atoms in an in-
terferometer for the polarization states (internal states)
is described in (Commins, 1991). The first observation
of a Berry phase in an external state atom interferom-
eter was accomplished by (Miniatura et al., 1992) with
a Stern Gerlach longitudinal interferometer. However in
this experiment the Berry phase was somewhat obscured
because the dynamics were not adiabatic. A Berry phase
up to 2π radians due to an atomic state interacting with a
laser field was observed by (Webb et al., 1999). This veri-
fied the spin dependence of the Berry phase, and realized
an “achromatic phase plate for atomic interferometry”
as suggested by (Olshanii, 1994; Reich et al., 1993). A
Berry phase shift for partial cycles using a time domain

atom interferometer was measured by (Yasuhara et al.,
2005) (see Fig. 42).

4. Inertial displacements

Atom interferometers are impressively sensitive to ac-
celeration and rotation because the long transit times
allow gravity and fictitious forces due to rotation and ac-
celeration to build up significant displacements of the in-
terference pattern, which directly influence the measured
phase (introduced in Section III Equation 18). These are
discussed fully in Section V on precision measurements.

D. Extended Coherence and BEC’s

Bose Einstein Condensates of atomic gasses are very
bright sources for atom optics and atom interferometers.
Additionally in a gas cooled below Tc, a significant frac-
tion of the atoms are in the condensate, which occupies
the lowest translational state of the trap. Typical BEC’s
offer a million atoms confined in a cigar shaped sam-
ple 100 microns long and 10 microns across, with co-
herence lengths of the same size, and relative velocities
around 0.1 mm/sec. A BEC with its coherence properties
(and brightness) constitutes a source analogous to a laser,
whereas the traditional thermal atom sources are analo-
gous to thermal sources such as candles or light bulbs in
optics.

This ideal source is hindered by the fact that atoms
interact which leads to a mean field interactions (chem-
ical potential). A typical condensate would have den-
sity 1014/cm3 with associated mean field energy of ∼1
kHz(×h), much larger then the ground state energy of
the trap. If the trap is turned off, and the BEC released,
this mean field energy dominates the expansion and the
condensate atoms will separate with several mm/sec rel-
ative velocity regardless of how small the RMS velocity
was inside the trap. Nevertheless the resulting momen-
tum spread is still an order of magnitude smaller than
the recoil velocity from a resonant photon. It is there-
fore easy to separate the momentum states differing by
a photon momentum in atom interferometers based on
BEC’s as discussed in section III. (e.g. see Fig. 22c).

Atom interferometers now offer a powerful tool to
study the properties of a Bose Einstein Condensate.

1. Atom Lasers

Early theoretical studies (Bagnato et al., 1987;
Moerdijk and Verhaar, 1994; Stoof, 1991) showed that
making a BEC in a trap is easier than making it in free
space because the critical density had to be reached
only at the bottom of the trap. They showed that the
perturbation of the transition temperature and critical
number density due to the s-wave scattering of the atoms
was less than 1%, encouraging the then-prevalent view
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FIG. 43 Bragg resonances for a trapped condensate (circles)
and after 3 ms time of flight (triangles). This maps the mo-
mentum distribution in the trapped (or expanding) conden-
sate. For comparison, the momentum distributions of the
ground state of the trapping potential (dotted curve) and of
a 1 mK cold, thermal cloud (dashed curve) are indicated. (In-
set) Bragg peak widths as a function of condensate size. The
plotted Bragg widths have been corrected by subtracting the
contribution of the mean field and the finite pulse duration.
The dashed curve is based on a prediction for the momentum
uncertainty due to the finite size of the condensate and the
uncertainty principle. Figure from (Stenger et al., 1999).

that the condensate is well described as a blob of very
cold atoms. This suggested making a laser like beam of
ultra cold atoms simply by extracting the atoms from
the condensate - such a beam would have an incredibly
low temperature, be almost monochromatic, and have
an unprecedented brightness (albeit over a very small
cross sectional area with limited total flux).

Early realizations of atom lasers coupled atoms out
from a condensate with radio frequency (rf) pulses,
rf chirps, Raman pulses, or weak cw rf radiation
(Bloch et al., 1999; Hagley et al., 1999; Mewes et al.,
1997). For discussions also see (Holland et al., 1996a;
Kleppner, 1997). The out-coupled atoms have energy
given by the out-coupling process plus the mean field en-
ergy they gain when emerging from the condensate. In
addition, they are accelerated by gravity and any ad-
ditional potential gradient. The out-coupling frequency
can be adjusted as the condensate number changes, to
account for the changing chemical potential. Moreover,
the number of atoms extractable from the condensate
is not limited because the condensate can be recharged
(Chikkatur et al., 2002) to produce a continuous atom
laser beam. Although a continuous atom laser is yet to
be demonstrated.

In principle, the output from this type of atom laser
can have a greater coherence length than the condensate
simply because it has the coherence time of the conden-
sate and is traveling. Using a stable BEC as a phase
reference could enable feedback to perfectly compensate
the changes in chemical potential. So far, however, co-
herence lengths of atom lasers have not exceeded the size
of the condensate.

Phase coherent matter wave amplification, in di-
rect analogy to laser gain, has been demonstrated

(Inouye et al., 1999; Kozuma et al., 1999b) and dis-
cussed early on by (Bordé, 1995; Holland et al., 1996a;
Janicke and Wilkens, 1996).

2. Studies of BEC wavefunctions

In the simplest picture of a BEC, all atoms in the con-
densate occupy the quantum ground state of the trap.
This wave function is modified by the mean field interac-
tion of the atoms. As more atoms accumulate in the con-
densate, their mutual interaction modifies the condensate
wave function. For repulsive interactions the condensate
wave function broadens at the expense of increased po-
tential energy from the trap in order to minimize the
mean field energy. Each atom in the condensate is co-
herent across the whole condensate and a double slit ex-
periment in either space or time should show interference
fringes.

More sophisticated treatments of atoms cooled below
the BEC transition temperature show that they can exist
in states called quasi-condensates that have short range
coherence, but not long range coherence over the whole
condensate. Whether BEC’s have long range coherence
was studied in interference experiments on BEC’s, which
we now discuss.

Bragg diffraction offers high momentum selectivity.
As discussed in Section II.C.3, the spread in velocity
of atoms that can be diffracted (σv) is determined by
the inverse duration of interaction with the grating, and
can be deduced from the time-energy uncertainty prin-
ciple, σv = 2/(τG). Near-resonant moving standing
waves therefore probe a specific velocity class , creating
a high-resolution tool for studying BEC velocity distri-
bution. By increasing the interaction time to nearly 1
ms, (Stenger et al., 1999) at MIT achieved a velocity se-
lectivity of 0.1 mm/sec, which allowed to study the
momentum distribution inside the trap and in a released
condensate Fig. 43, demonstrating the mean field acceler-
ation. The coherence length was equal to the transverse
dimension of the condensate (see Fig. 43 inset).

A similar conclusion was reached independently by
Kozuma et al. (1999a) at NIST using an atom interfer-
ometry technique in which KD out-coupled atom pulses
were applied at two closely spaced times. Each ejected
pulse mirrors the condensate itself, so when the front of
the second overlapped the back of the first the interfer-
ence observed was indicative of coherence between two
spatially separated places in the condensate. The decay
of the fringe envelope was as expected for a fully coherent
condensate.

Experiments studying the coherence of atom laser
beams were carried out by Bloch et al. (2000) in T. Haen-
sch’s lab in Munich. Two atom laser beams coupled out
from different locations of the trap were overlapped to
interfere. By changing the separation of the out coupling
locations, and observing the contrast of the interference
between the two out coupled beams they probed the co-
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FIG. 44 (color online) Spatial correlation function of a
trapped Bose gas as measured by the fringe visibility as a
function of slit separation for temperatures above (white cir-
cles T=450 nK and squares T=290 nK) and below the critical
temperature Tc (grey T=310 nK and black T=250 nK), where
the visibility decays to a nonzero value due to the long range
phase coherence of the BEC. The data points displayed in
the Figure are corrected for the reduction in visibility which
is due to the limited resolution of the imaging system. Figure
reproduced from (Bloch et al., 2000).

herence properties of the condensate wave function on
length scales approaching 1 micron (Figure 44). Measure-
ment of the temporal coherence of an atom laser has also
been used to give an upper limit for temporal phase fluc-
tuations corresponding to ∼ 700 Hz in the Bose-Einstein
condensate (Kohl et al., 2001).

In a related experiment Anderson and Kasevich (1998)
observed interference of atoms from an array of BEC’s
trapped in an optical lattice. The interference between
the BEC’s at different gravitational potential leads to a
pulsed atom laser beam. Since many sources contribute,
the pulses are much shorter than the separation between
them, reminiscent of a mode-locked pulsed laser.

3. Many particle coherence in BEC’s

The above experiments can all be viewed as looking at
single particle coherence.

BEC’s have an even more dramatic coherence than the
extended condensate wave function just discussed. The
atoms in the condensate are in one macroscopic state
with an order parameter, the phase. Consequently the
phase of one condensate atom is the phase of all. There-
fore, a condensate also exhibits coherence properties re-
sulting from the interference of different (but indistin-
guishable) atoms. This gives it coherence properties like
a laser: if the phase is determined by measuring some of
the atoms, other atoms will have the same phase.

Measuring the phase of condensate atoms requires a
coherent and stable reference. Such a reference can be
provided by another condensate, or by other atoms from
the same condensate. This is in marked contrast to tradi-
tional atom interference discussed up to now, where inter-
ference is only that of each atom with itself. The BEC ex-

FIG. 45 (color online) Left: Schematic setup for the observa-
tion of the interference of two independent BEC’s separated
by a barrier created by a blue detuned laser beam. After
switching off the trap, the condensates expand ballistically
and overlap. In the overlap region, a high-contrast interfer-
ence pattern is observed by using absorption imaging. Right:
Interference pattern of two expanding condensates observed
after 40 msec time of flight. The width of the absorption
image is 1.1 mm. The interference fringes have a spacing of
15 µm and are conclusive evidence for the multiparticle co-
herence of Bose-Einstein condensates. (Durfee and Ketterle,
1998) (Andrews et al., 1997).

periments using Bragg scattering discussed above demon-
strate only the spatial coherence of individual atoms in a
BEC. We now turn to experiments that show the coher-
ence of different atoms in a BEC.

The existence of a macroscopic wave functions with
an order parameter means that atoms from different
sources can interfere. If an atom from one inter-
feres with an atom from the other, subsequent atom
pairs will interfere with the same relative phase and
fringes will be built up which reflect the relative phase.
This is similar to interference between two independent
lasers (Castin and Dalibard, 1997; Kaltenbaek et al.,
2006; Paul, 1986; Pfleegor and Mandel, 1967), which also
generated controversy prior to its observation.

The first experiment demonstrating this striking be-
havior was by Andrews et al. (1997) in the Ketterle group
at MIT. To demonstrate that two independent BEC’s can
interfere, two independent condensates were produced in
a double-trap potential created by dividing a magnetic
trap in half with a focused blue-detuned laser beam. Af-
ter two BEC’s were created from separate thermal clouds,
the traps were switched off. The atom clouds expanded
ballistically and overlapped.

The atomic density in the overlap region was observed
directly with absorption imaging, and revealed a high
contrast interference pattern extending over a large re-
gion of space (Fig. 45). The interference pattern con-
sisted of straight lines with a spacing of about 15 µm.
This experiment provided direct evidence for first-order
coherence and a macroscopic wave function with long



46

→cool

(a)

(b)

→split

→split

→cool

−2 0 2
0

40

80

oc
cu

ra
nc

es

−2 0 2
0

20

40

∆φ   (rad)

oc
cu

ra
nc

es

FIG. 46 Comparison of independent and coherently split
BEC’s. (a) For the coherent splitting a BEC is produced
in the single well, which is then deformed to a double well. A
narrow phase distribution is observed for many repetitions of
an interference experiment between these two matter waves,
showing that there is a deterministic phase evolution during
the splitting. (b) To produce two independent BEC’s, the
double well is formed while the atomic sample is thermal.
Condensation is then achieved by evaporative cooling in the
dressed state potential. The observed relative phase between
the two BEC’s is completely random, as expected for two
independent matter waves (Hofferberth et al., 2006).

range order in the BEC, and caused some to puzzle over
why wave packets expanding radially outwards from two
small condensates would produce straight fringes.

In a related atom chip experiment Hofferberth et al.
(2006) compared the interference of a coherently split
BEC with the interference of two independently created
BEC’s in identical traps (Fig. 46). The coherently split
BEC shows a well-defined phase, i.e. the same phase
for the fringes each time the experiment is run. In com-
parison, the independently formed BEC’s show high con-
trast interference patterns but with a completely random
phase.

These results are even more surprising than the inter-
ference of independent lasers. Theories describing laser
sources predict something close to coherent states (for
lasers operated well above threshold), which means that
each laser beam may be thought of as having a well de-
fined (if unknown) phase. One cannot, however, assert
that the phase of a BEC exists prior to its observation.
This is because a BEC at T=0 can easily contain a known
number of atoms (however many were put in the trap), in
which case number-phase uncertainty prevents the phase
from being specified. So the existence of a well defined
relative phase, and hence fringes in the overlap region
seems puzzling.

The resolution to this puzzle is that the phase of
the fringes (i.e. the relative phase of the condensates)
emerges only as individual atoms are detected in the
overlap region (Castin and Dalibard, 1997). Since these
atoms cannot be attributed to a particular one of the
interfering condensates, an uncertainty develops in the
relative number of atoms in the condensates, and in ac-
cord with the relative number-phase uncertainty princi-
ple, they can have a definite relative phase (even though

FIG. 47 Interference of 30 Bose-Einstein condensates each
containing ∼ 104 atoms. (a) A deep 1D optical lattice splits a
cigar shaped condensate into 30 independent BEC’s. (b) Ab-
sorption image of the cloud after 22 ms of expansion from the
lattice. The density distribution shows interference fringes.
(c) Axial density profile of the cloud, radially averaged over
the central 25 µm. (d,e) Polar plots of the fringe ampli-
tudes and phases for 200 images obtained under the same ex-
perimental conditions. (d) Phase-uncorrelated condensates.
(e) Phase correlated condensates. Insets: Axial density pro-
files averaged over the 200 images. Figure reproduced from
(Hadzibabic et al., 2004).

the total number of atoms in both condensates plus those
detected is known). Given that neither the phase of ei-
ther condensate nor their relative phase existed initially,
it should not be surprising that the fringes in each re-
alization of the experiment are observed in a different
place. After averaging over many realizations of this ex-
periment, the fringe contrast vanishes because the rela-
tive phase of each realization is random.

Even when many independent condensates interfere,
spontaneous fringes appear. Hadzibabic et al. (2004) ob-
served high-contrast matter wave interference between
30 Bose-Einstein condensates produced in a large-period
one-dimensional optical lattice. Interference was studied
by releasing the condensates and allowing them to over-
lap. High contrast fringes were observed even for inde-
pendent condensates with uncorrelated phases as shown
in Figure 47. This can be explained the same way as the
high-contrast speckles formed by laser light reflecting off
a diffuser. However, as in the work with two independent
condensates, averaging over many realizations the exper-
iment causes fringe contrast to vanish because the phase
is random from shot to shot.



47

FIG. 48 Preparing a relative phase between two independent
BEC’s with no initial phase relation. (A) The temporal trace
of the Bragg beam intensity shown with the pulse sequence.
(B) Phase of the oscillations recorded during the first pulse.
(C) Phase during the second pulse. (D) Phase difference be-
tween (B) and (C). (E) Phase difference between the oscil-
lations in two pulses as a function of the phase shift applied
during the evolution time between pulses. Each point is the
average of several shots (between 3 and 10). Figure and cap-
tion reproduced from (Saba et al., 2005).

4. Coupling two BEC’s with light

Saba et al. (2005) have demonstrated a way to make an
interferometer using two BEC’s that are never in direct
contact and which are separately trapped at all times.
The key is to use stimulated light scattering to continu-
ously sample the relative phase of the two spatially sep-
arated BEC’s. In fact this sampling creates a relative
phase between the two condensates which in the begin-
ning had no initial phase relation.

The basis of the measurement is the beating of two
atom lasers out coupled from the two condensates by im-
parting a momentum ~q. If the relative phase of the
condensates is fixed, the total number of out coupled
atoms oscillates sinusoidally with periodicity h/d as ~q
is scanned (d is the separation of the condensates). The
experimental tool used to impart a precise momentum
to atoms is Bragg scattering. Two counter-propagating

laser beams with wave vectors k1, k2 hit the atoms so
that, by absorbing a photon from one beam and re-
emitting it into the other one, the atoms acquire recoil
momentum ~q = ~(k2−k1) (provided that the energy dif-
ference between photons matches the atom recoil energy).
For each atom out-coupled, a photon is transferred from
one beam to the counter-propagating one. Therefore, all
information contained in the stream of out-coupled atoms
is also present in the light scattered from one beam to the
other. Relative phase data were gathered in real time by
monitoring the intensity of the weaker of the Bragg laser
beams, instead of terminating the experiment to measure
the out-coupled atoms using absorption imaging.

Since the relative phase of the condensates can be
measured after scattering only a small fraction of the
atoms out of the condensates, this technique gives a rela-
tively nondestructive measurement of the relative phase.
This technique therefore allows one to prepare an ini-
tial relative phase (by an initial measurement) of the
separated condensates, then to read it out continuously,
and thereby to monitor the phase evolution. This way
one can realize interferometry between two trapped Bose-
Einstein condensates without ever splitting or recombin-
ing the wavefunction. The condensates can’t be too far
apart, however, as the relative atom number uncertainty
cannot arise until the atoms out-coupled from the first
condensate have time to reach the second atom laser
beam and create a downstream atom laser whose atoms
could have arisen from either condensate. (In fact, when
the atom laser beams interfere destructively, the Bragg
beams operating on the second condensate effectively
capture atoms from the first atom laser beam and in-
sert them in the second condensate!) The necessity for
this process to have occurred dictates the temporal delay
of the buildup of the light fringes in part A of Fig. 48 -
it takes about 250 µsec for atoms to make this trip.

This atom interferometer, featuring interference be-
tween always-separated ensembles of interacting atoms
is several significant steps away from the prototypical in-
terferometer in which uncorrelated non-interacting indi-
vidual atoms traverse one at a time. In fact it resembles
a gedankenexperiment involving two high Q L-C circuits
resonant with the ac power source in the lab. Suppose
these are both plugged in to different power outlets for
a while, then disconnected. If some time later these are
attached to the reference and signal ports of a phase de-
tector, it will read a definite phase. Moreover, this phase
will be reproducible shot to shot. If one of the L-C cir-
cuits is somehow perturbed, then the phase shift will be
systematically modified. Does this situation, involving
classical L-C circuits constitute an interferometer, or just
classical fields interfering??

In fact it is almost perfectly analogous to the experi-
ment just described, with the roles of matter and E&M
waves reversed. The L-C resonant circuits are classical
containers containing coherent states of low frequency
photons; the light traps are classical containers contain-
ing coherent states of atoms. In either case phase shifts
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can be caused by interactions with the container (squeez-
ing one of the L-C circuit components or light traps), or
by interactions with the quantized medium within (e.g.
by non-linear circuit elements added to the L-C circuit
or by a magnetic field that interacts with the BEC). The
initial coherence is induced by the exchange of photons
with the coherent source provided by the power gener-
ation station in one case, and by the mutual exchange
of atoms in the other. There is a significant interaction
among the atoms in the BEC, whereas the Kerr effect
for L-C circuits is small, but this is not fundamental.
Neither the L-C circuits nor the light wells are interfer-
ing, both function as classical containers for waves that
are phased together. The waves undergo differential in-
teractions, and interfere later to produce a measurable
phase shift. Ideally this is solely a measure of the inter-
action, but in practice small differences between the two
containers cause detrimental phase shifts.

E. Studies with and of BEC’s

Up to now we have reviewed experiments and theo-
ries pertaining to the coherence of BECs. Now we shift
perspective and consider them as interesting condensed
objects in their own right. Some of the earliest work that
showed this was the study of the frequencies of the shape
oscillations of the condensate. In this section we review
experiments that were made using the techniques and
ideas of atom optics and interferometry and that allow
one to address other properties of BECs. In order, we will
review the coupling of two BECs to mimic the physics of
Josephson junctions, their intrinsic decoherence, and two
experiments that probe their structure.

1. Josephson oscillations

As shown by Smerzi et al. (1997), two trapped BEC’s
that are weakly coupled (i.e. by tunneling through the
barrier) are represented by a generalization of the equa-
tions that apply to a Josephson junction. The analog
is that the sine of the phase difference causes a current
flow between the traps that changes the number differ-
ence (and hence the potential difference that drives the
phase change). Given two trapped BEC’s, by adjusting
the tunneling rate (i.e. the coupling strength between the
two BEC’s), Josephson oscillations between two weakly
linked Bose Einstein condensates can be studied.

The experiments of Albiez et al. (2005) demonstrate
both the nonlinear generalization of tunneling oscillations
in Josephson junctions for small population imbalance
z, and non linear macroscopic quantum self-trapping for
large population imbalance. The distinction between the
two regimes is very apparent in the phase-plane portrait
of the dynamical variables z and Φ as shown in Figure
49. The successful experimental realization of weakly
coupled Bose-Einstein condensates adds a new tool to

FIG. 49 (color online) Josephson oscillations. (a) Small popu-
lation imbalance causes Josephson oscillations, and large pop-
ulation imbalance causes self-trapping. (b) Quantum phase-
plane portrait for the bosonic Josephson junction. In the
regime of Josephson oscillations the experimental data are
represented with filled circles and in the self-trapping regime
with open circles. The shaded region, which indicates the
Josephson regime, and the solid lines are obtained by solving
the coupled differential with the specific experimental param-
eters. Figure from (Albiez et al., 2005)

both condensed matter physics and to quantum optics
with interacting matter waves. In particular, we have
to realize that the beamsplitting (and also the recom-
bination if done at high density) of two BECs must be
discussed in terms of the Josephson effect, or possibly its
generalization.

A detailed study of the phase noise in the interfer-
ence patterns, allowed Gati et al. (2006a,b,c) to mea-
sure the temperature of the tunnel coupled BEC’s. Fur-
ther examples of tunneling were investigated with BEC’s
trapped in optical lattices by Anderson and Kasevich
(1998); Orzel et al. (2001) in M. Kasevich’s Lab and by
Cataliotti et al. (2001, 2003) in Florence.

2. Spontaneous decoherence and number squeezing

BECs have an intrinsic decoherence due to fluctuations
in the number of atoms they contain. If a BEC is pre-
pared in a number (Fock) state, its phase is indetermi-
nate. If its phase is determined, for example by placing
the BEC in a coherent state, then it must be in a su-
perposition of states with different atom number. (For
example, a coherent state is a (coherent) superposition

of states with different number, with rms variation
√
N .)

Since the mean field energy of a trapped BEC increases
with N (∼ N2/5 in a harmonic trap), this means the
different components have different energy, evolve at a
different rate, and get out of phase. The time for this
to happen is typically 25 to 50 ms, severely limiting the
accuracy of BEC interferometers.

Even if a BEC interferometer starts with a definite
number of atoms in the central well, the

√
N projection

noise at the beam splitter, translates into fluctuations
of the chemical potential which results in fluctuations in
the accumulated phase of the interferometer and conse-
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quently in a rapid dephasing of the split BEC. The phase
diffusion rate can then be estimated by:

Rφ =
1

~

dµ

dN
∆N, (49)

where N is the number of Atoms in the BEC, µ its chem-
ical potential. With the chemical potential µ larger then
the trapping frequency ω (µ > ~ω) for trapped atoms
after typically a few transverse trapping times the phase
is random and the coherence is lost. This phase diffu-
sion caused by the interactions between the atoms puts
stringent limits on the persistence of coherence in a BEC
interferometer.

This interaction-induced dephasing can be reduced in
different ways:

• Reduce the effect of interactions by tuning the scat-
tering length with a Feshbach resonance. This may
permit setting the scattering length to zero. This
requires precise control over the magnetic field, and
may limit the number of atoms used in the experi-
ments since the mean field repulsion is proportional
to the scattering length and hence the ground state
condensate will no longer be spread out.

• If the method of light scattering described above
to measure the phase evolution of the two conden-
sates is applied to two initially number-squeezed
condensates (e.g. if a large condensate were sep-
arated adiabatically), it will add differential num-
ber uncertainty only in proportion to how well the
phase is determined.

• If the splitting is performed adiabatically, the repul-
sive interaction itself will tend to equalize the chem-
ical potentials of the splitting condensates. Thus
the relative atom number distribution will be re-
duced if the splitting is performed slowly. This will
reduce the relative phase diffusion rate of the initial
condensates at the cost of an increased uncertainty
in the initial phase, but this can be increased to the
measurement noise level without penalty. For in-
terferometers using large condensates this can lead
to significant increases in their sensitivity and ap-
plicability.

In fact, dramatic observations of number squeezing
have already been made. Squeezing between atoms
trapped in arrays of traps was observed by Orzel et al.
(2001). Recently Jo et al. (2007) observed a dramatically
reduced phase diffusion in a trapped BEC split with an
RF splitter on an atom chip.

3. Structure studies of BEC

According to theory, a BEC possesses collective modes
(e.g. sound waves) due to the interactions of the atoms.

FIG. 50 Direct observation of the phase dynamics through
interference. Example images of the observed interference
patterns for hold times t = 1, 4, 7, 10 ms (top) in the case of
isolated 1d systems and (bottom) for finite tunnel coupling.
The different transverse double-well potentials shown as indi-
cated. (adapted from Hofferberth et al. (2007a)

In a quantum many-particle description, it’s dispersion
relation has the Bogoliubov form

ν =
√

ν2
0 + 2ν0µ/h, (50)

where µ = n4π~
2a/m is the chemical potential, with

a and m denoting the scattering length and the mass,
respectively, n is the density of the condensate, and
hν0 = q2/2m is the free particle dispersion relation.
(Ozeri et al., 2005; Stamper-Kurn et al., 2001).

In a typical Rb or Na condensate, µ/h is about a kHz,
corresponding to speeds of ∼cm/sec or less. The Bragg
Spectroscopy discussed previously generates atoms with
several times this speed, which therefore have nearly their
free-particle dispersion relation (the mean field energy
term being negligible). However, by reducing the an-
gle of the Bragg beams from 180 to much smaller angles,
the transferred momentum was correspondingly reduced,
and many fewer atoms are liberated from the conden-
sate (i.e. the static structure factor is no longer unity),
and the frequency shift relative to a free particle fol-
lows Eq.50. Studies of BEC structure are in (Katz et al.,
2004; Steinhauer et al., 2003), and theory for these mea-
surements is discussed by (Blakie and Ballagh, 2000;
Carusotto et al., 2000).

Physics which goes deeper into the properties of de-
generate quantum gases and their coherence properties
is outside the purview of this review, so we refer the
reader to a series of excellent reviews in the literature
which summarize the status of this still very fast moving
field (Cornell and Wieman, 2002; Dalfovo et al., 1999;
Kasevich, 2002; Ketterle, 2002).

4. Dynamics of coherence in 1-D systems

Interference allows to study the dynamics of
(de)coherence in degenerate Bose gases. This is especially
interesting in the one-dimensional (1D) regime where
long-range order is prevented by the ubiquitous phase-
fluctuations.
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FIG. 51 Distribution functions of the measured interference
contrasts for different lengths L along the 1d Condensate.
(a) The length-dependent normalized interference contrasts
α with parameters (n1d = 60µm−1, ν⊥ = 3.0 kHz, K = 46).
The red curves show the corresponding calculated distribu-
tions for T = 30 nK (ξT = 0.9µm). (b) Same param-
eters as in (a), but higher temperature T = 60nK. For
both sets Hofferberth et al. (2007b) observe the predicted
change of overall shape of the distribution functions from
single peak Gumbel-type characteristic for quantum noise to
Poissonian characteristic for thermal noise. (adapted from
(Hofferberth et al., 2007b))

In their experiments Hofferberth et al. (2007a) coher-
ently split a 1d quasi-condensate, characterized by both
the temperature T and chemical potential µ fulfilling
kBT, µ < hν⊥, along the transverse direction which ini-
tializes the system in a mutually phase coherent state,
and phase fluctuation patterns of the two individual 1d
systems being identical. This highly non-equilibrium
state relaxes to equilibrium over time and the evolution
of (de) coherence is revealed in local phase shifts leading
to increased waviness of the interference pattern (Figure
50).

If the two parts of the system are completely sepa-
rated, the equilibrium state consists of two uncorrelated
quasi-condensates and Hofferberth et al. (2007a) observe
a randomization of the relative phase θ(z, t) as expressed
in the coherence factor Ψ(t) = 1

L

∣

∣

∫

dz eiθ(z,t)
∣

∣. Most in-

terestingly Ψ(t) decays sub exponential Ψ(t) ∝ e−(t/t0)
2/3

as predicted by Burkov et al. (2007) based on a Luttinger
liquid approach (Haldane, 1981). Qualitatively similar
behavior was recently observed at MIT (Jo et al., 2007)
for elongated condensates with µ ∼ 2hν⊥ and T ∼ 5hν⊥.

For finite tunnel coupling between the two systems,
Hofferberth et al. (2007a) observe that the final equilib-
rium state shows a non-random phase distribution (Fig-
ure 50 (bottom)). The phase randomization is counter-
balanced by the coherent particle exchange between the
two fractions, equivalent to injection locking of two mat-

ter wave lasers. The final width of the observed phase
spread depends on the strength of the tunnel coupling
(Gati et al., 2006c).

5. Measuring noise by interference

In many-body systems quantum noise can reveal the
non-local correlations of underlying many-body states
Altman et al. (2004). Recently it has been suggested
that the statistics of the shot to shot fluctuations in
fringe contrast probe higher order correlation functions
(Gritsev et al., 2006; Polkovnikov et al., 2006).

This rational was used by Hofferberth et al. (2007b)
in an experiment investigating the statistical proper-
ties of interference experiments performed with pairs of
independently created one-dimensional atomic conden-
sates (Hofferberth et al., 2006). The shot-to-shot vari-
ations of interference can then be directly related to
the full distribution functions of noise in the system
(Polkovnikov et al., 2006). Probing different system sizes
they observe the crossover from quantum noise to ther-
mal noise, reflected in a characteristic change in the dis-
tribution functions from Gumbel-type to Poissonian 51.
The results are in excellent agreement with the predic-
tions of Gritsev et al. (2006) based on the Luttinger liq-
uid formalism (Haldane, 1981).

These experiments demonstrate the power of quantum
noise analysis in interference patterns as a probe of cor-
related systems, and the power of simple ultra cold atom
systems to exhibit and illustrate fundamental quantum
processes relevant in many areas of physics.

6. Momentum of a photon in a medium

The momentum of a photon propagating in a medium
is a topic fraught with controversy. When an electro-
magnetic wave enters a medium with index of refraction
n, its wavelength is reduced, and its wavenumber is in-
creased, by n. Thus is seems evident that a single pho-
ton in this medium would have momentum p = n~kvac,
a conclusion reached by Minkowski (1908) (Minkowski,
1910) using classical physics. On the other hand, if the
photon is considered as a particle, it seems very strange
that it should increase its momentum when entering a
medium in which its speed is reduced! Such a viewpoint
is supported by Abraham (1909) who found p = ~kvac/n.
Resolving these two viewpoints has been cited as one of
the challenges of theoretical physics (Peierls, 1991).

When a photon propagating in an atomic gas is ab-
sorbed by one of the atoms in the BEC, what is the mo-
mentum of the atom after the absorption? This question
seems less subject to uncertainty since it can be settled
by a measurement; it is also important in precision exper-
iments to measure h/m that will be discussed in the next
Section. For a dilute atomic gas, a third opinion seems
justified: a BEC has only a few atoms per cubic wave-
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FIG. 52 Recoil frequency measured by (Campbell et al.,
2005) on two sides of resonance. The dashed line shows ex-
pected result for free atoms, solid line corrects for chemical
potential assuming p = ~kvac. Solid line with error shading
shows expectation if p = n~kvac.

length, and no obvious mechanism to transfer momentum
to/from the atoms not involved in the absorption - hence
the atom will absorb momentum p = ~kvac.

In a recent experiment done in a BEC by
Campbell et al. (2005), a double pulse Kakpita-Dirac in-
terferometer was used to measure the recoil energy of
Rb atoms in a BEC for laser frequencies on both sides
of the resonance. The results showed marked structure
near the resonance, consistent with that predicted from
the variation of n near the resonance only if p = n~kvac.

With continued progress on these topics, interferome-
ters with BEC hold the promise to be employed as highly
sensitive devices that will allow exploration of a large va-
riety of physics questions. These range from atom-surface
interactions to the intrinsic phase dynamics in interact-
ing (possibly low dimensional) quantum systems or the
influence of the coupling to an external ‘environment’
(decoherence).

F. Testing the charge neutrality of atoms

The equality of the electrical charges of the elec-
tron and proton, and the charge neutrality of the neu-
tron are of great significance in the fundamental the-
ory of particles (Chu, 1987; Unnikrishnan and Gillies,
2004). Experimental tests of the electrical neutrality of
bulk solid matter and bulk quantities of gas are precise
enough at present to state that (qp + qe)/e < 10−21

(Dylla and King, 1973; Marinelli and Morpurgo, 1982,
1984). An experiment searching for deflection of a neu-
tron beam has set a similar limit for the electric charge
of the neutron qn < 10−21 (Baumann et al., 1988). Ex-
periments with individual atoms or molecules in a beam
have only been able to verify the net electrical charge
of (qp + qe) is less than 10−19e (Hughes et al., 1988;
Zorn et al., 1963).

A dedicated atom interferometry experiment could de-
tect a phase shift if (qp + qe)/e = 10−22. The phase shift
would be

φ =
(qp + qe)ZE∆xL

v~
≈ 10−4rad (51)

where we have assumed Z = 55 is atomic number, E = 10
kV/mm is the applied field, ∆x = 100µm is the separa-
tion of the paths in the interferometer, L is the length
of the interaction region, and v = 100 m/s is the atomic
velocity. Champenois et al. (2001b) and (Dehuille et al.,
2001) studied this. The main difficulty will come from
the electric polarizability of atoms which will cause large
phase-shifts due to field gradients. But because these
phase-shifts are quadratic in the applied electric field
while the proposed effect is linear, these stray phase-shifts
should mainly limit sensitivity.

V. PRECISION MEASUREMENTS

Since their demonstration in 1991, atom interferom-
eters have become precision measurements tools. The
advantages of small de Broglie wavelengths, long propa-
gation times, and the narrow frequency response of atoms
are responsible for atom interferometers already having
made an impact on many fields of fundamental science
and engineering. In the present section, we discuss mea-
surements of acceleration, platform rotation, the Molar
Planck constant (NA×h) and the fine structure constant
(α). Although some of the measurements of atomic and
molecular properties are precision measurements by the
standards of those fields, they will all be discussed in
Section VI .

A. Gravimeters, Gryroscopes, Gradiometers

Inertial sensors based on atom interferometers already
perform comparably to the best available sensors based
on any technology. At their current levels of resolution
summarized in Table II several interesting applications
are within reach. In fact, development has begun for
commercial sensors and commercial applications using
atom interferometers. To explore the precision, reso-
lution, accuracy, response factor, bandwidth, dynamic
range, and stability achievable with atom interferome-
ters we begin by looking at the different designs used for
gravimeters, gyroscopes, and gravity gradiometers.

Thermal atom beams for rotation, freely falling atoms
for acceleration, and two clouds of falling atoms with a
common laser beam for the gradiometer have given the
best results to date. This is in part because rotation sen-
sors have a response factor (i.e. phase shift per rotation
rate) that increases linearly in proportion to the atom’s
time of flight; but accelerometers have a response factor
that increases quadratically with time of flight. Part of
the tradeoff is that fast atom beams offer more atoms
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TABLE II Inertial sensing resolutions demonstrated with
atom interferometers.

Sensor Resolution

Gravimetera 2× 10−8 (g) /
√

Hz

Gravity gradiometerb 4× 10−9 (g/m)/
√

Hz

Gyroscopec 6× 10−10 (rad/sec)/
√

Hz

a(Peters et al., 2001)
b(McGuirk et al., 2002)
c(Gustavson et al., 2000)

per second than cold atom sources. Larger interferome-
ters will improve sensitivity and slow atom interferome-
ters can make compact sensors. In each case, to judge
the overall performance one must also look at systematic
errors.

Displacements from an inertial reference frame with a

constant acceleration ~g and a constant rotation ~Ω causes
a phase shift for a 3-grating interferometer

φ = (~G · ~g)τ2 + 2 ~G · (~Ω× ~v)τ2. (52)

where ~G is the reciprocal lattice-vector of the gratings,
and τ is the time of flight for atoms with velocity ~v
to travel between gratings (Anandan, 1981; Bongs et al.,
2006; Dresden and Yang, 1979; Dubetsky and Kasevich,
2006; Malykin, 2000). Referring to our previous section
on the origin of phase shifts, this phase is equivalent to
the envelope shift, a classical property. Equation 52 can
be derived from the grating phase (introduced in Section
III Equation 18)

φ = ~G · [~x1(t1)− 2~x2(t2) + ~x3(t3)] (53)

where xi is the transverse position of the ith grating (with
respect to an inertial frame) at time ti (when the atoms
interact with the grating).

Rotation about the center grating in a space-domain
interferometer causes a phase shift

φatom = 2ΩGLτ = 4πΩ
m

h
A (54)

where L is the separation between gratings, τ is the time
of flight between gratings, and A is the area enclosed by
the interferometer paths. For an optical interferometer

φlight = 2ΩGL2 1

c
= 4πΩ

1

λphc
A. (55)

The ratio of phase sifts for a given rotation rate (Ω),
assuming equivalent interferometer areas (A), is

φatom

φlight
=
mc2

~ω
=
λph

λdB

c

v
≈ 1010. (56)

This famous ratio shows that atom interferometers have
a huge Sagnac response factor compared to optical inter-
ferometers.

However, to really gain this large increase in resolution
(at the expense of bandwidth v/c), both the enclosed
area and the count rate of the two types of interferome-
ters must be equal. But a fiber optic ring gyro can easily
have an enclosed area of A = 103 m2 and still have a
much better bandwidth compared with the largest atom
interferometers that have A = 10−4 m2. So the response
factor is only a few orders larger for today’s atom in-
terferometers. Furthermore, while the count rate for an
optical Watt of power is on the order of 1019 photons per
second, typical atom interferometers offer only 107 atoms
per second.

For acceleration, one can see from Eq. 52 that,

φatom

φlight
=

( c

v

)2

(57)

if identical gratings are used for light and atom interfer-
ometers.

The presence of velocity v in the Eq. 52 has two im-
portant consequences. For a space-domain interferome-
ter, the acceleration phase depends on τ2 while the ro-
tation phase depends on τ . Therefore, slow atoms are
particularly advantageous for sensing acceleration, but
fast atoms (beams) offer competitive sensitivity for gyro-
scopes. That is why the best gravimeters use cold atoms,
and the best gyroscopes use thermal atomic beams. From
the vector notation in Eq. 52 one can see that revers-
ing the atom velocity switches the sign for the rotation
phase but not the acceleration phase. This provides
a method to distinguish Ωx from gy or gz. Kassevich
used counter-propagating atom beams for this reason
(Gustavson et al., 2000).

Instrument resolution is given by the response factor
times the precision with which the phase shift can be
measured. Since the noise-limited phase precision in-
creases with the square root of time (as discussed in
Section III Eq. 19), it is customary to report the res-
olution per root Hertz. Instrument bandwidth is limited
in part by the desired resolution and also simply by the
atom’s time of flight. Dynamic range can be limited by
dispersion. For example, if there is a velocity spread in
a space domain interferometer, then the resulting spread
in inertial phase decreases the contrast, as discussed in
Sections III and IV. For a Gaussian distribution in phase
with an RMS σφ, the contrast is reduced by the factor

C/C0 = 〈eiφ〉 = e−
1
2σ2

φ .
Measurements of gravitational acceleration in the en-

gineering literature are often reported in units of µGal
(1 µGal = 10−8 m/s2) or the more common unit of g
(g ≈ 9.8 m/s2). Many applications in geophysics are cur-
rently served with sensors that have 5 × 10−9g (5µGal)
precision after averaging for 15 minutes (Allis et al.,
2000). The light pulse (Raman) interferometer in
(Peters et al., 2001) (described in chapter III) attains
this precision in less than one minute. Measurements
with this apparatus that show time-variations in local
g due (mostly) to tides are shown in Figure 53. Some
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TABLE III List of geophysical sources of change in
g.(Allis et al., 2000; Peters et al., 2001; Sasagawa et al., 2003)

Gravitation Source Magnitude

Tides at Stanford, CA 2× 10−7 g

1000 kg 1.5 meters away 3× 10−9 g

Loaded truck 30 m away 2× 10−9 g

Elevation variation of 1 cm 3× 10−9 g

Ground water fluctuation of 1 m 5× 10−9 g

108 kg of oil displacing salt at 1 km 5× 10−7 g

TABLE IV Rotation rates due to various causes.

Cause Rotation Rate (rad/s)

Earth’s rotation Ωe = 7.2 × 10−5

Tidal drag in 1 yr. δΩe = 10−13

Lense-Thirring ΩLT = 10−14

Geodetic Effect ΩGD = 10−12

variations in g due to sources of geophysical interest are
shown in Table III.

Gravity gradients in the engineering literature are of-
ten measured in units of E (1E = 10−9s−2 ≈ 10−10 g/m)
or simply g/m. By measuring the differential gravita-
tional acceleration in two atom interferometers located
one meter apart from each other, Snadden et al. (1998)
measured the Earth’s gravity gradient (∇g = 3 × 10−6

g/m) with an uncertainty of 5% and (Fixler et al., 2007)
measured the change in gravity gradient caused by a 540
kg source mass of Pb (∇g = 8×10−9 g/m) with an uncer-
tainty of 0.3%. Related measurements are also described
in (Foster et al., 2002; Kasevich, 2002; McGuirk et al.,
2002). Second order phase shifts due earth gravity and
gavity-gradients and centrifugal and Coriolis forces due
to Earth rotation have been identified by (Bertoldi et al.,
2006; Bongs et al., 2006; Dubetsky and Kasevich, 2006).

Historical background: The first measurements of g
with a matter-wave interferometer was done with neu-
trons by Colella et al. (1975). An early proposal for atom
interferometer measurements of g by Clauser (1988) was
followed by several demonstrations with rapidly improv-
ing resolution and accuracy (Kasevich and Chu, 1992;
Peters et al., 1999, 2001, 1997; Schmiedmayer et al.,
1997; Young et al., 1997). An atom beam sensor for lit-
tle g based on the classical moire-effect was also con-
structed with three material gratings by Oberthaler et al.
(1996b).

In 1913, Sagnac (1913a,b) made his famous light-
interferometric measurement of platform rotation.
Michelson (1925) measured the rotation rate of the
earth, Ωe, with a large optical interferometer. The
Sagnac effect with neutron and electron interferometers
has also been demonstrated (Hasselbach and Nicklaus,
1993; Werner et al., 1979). Atom interferometer gyro-
scopes were proposed early on by Clauser (1988). An

FIG. 53 (a) Two days of gravity data. Each data point repre-
sents a 1 min gravity measurement. The solid lines represent
two different tidal models. (b) The residuals of the data with
respect to a tidal model where (i) the earth is modelled as a
solid elastic object and (ii) the effects of ocean loading of the
Earth are taken into account. Figure and caption reproduced
from (Peters et al., 2001).

atom interferometer Sagnac gyroscope was first built by
Riehle et al. (1991), and huge improvements in sensitiv-
ity were demonstrated by (Gustavson et al., 1997, 2000;
Lenef et al., 1997).

B. Newton’s constant G

Newton’s constantG is the least accurately known fun-
damental constant. The 2005 CODATA value of G has a
precision of 1.4×10−4 (Mohr and Taylor, 2005), although
several individual experiments have recently claimed pre-
cision better than this (Gundlach and Merkowitz, 2000;
Quinn et al., 2001). Atom interferometry is a relatively
new method to measure G, and may soon provide com-
parable precision to the CODATA value.

The Kasevich group determined G with a precision
of 3 × 10−3 (Fixler et al., 2007), and the Tino group
reported a value for G with a precision of 1 × 10−2

(Bertoldi et al., 2006). Both of these groups use two
atom interferometer gravimeters and a movable source
mass of order 500 Kg. The Tino group plans to ex-
tend their precision to the 10−4 level. Methods to
measure G with atom interferometry are also discussed
in (Fattori et al., 2003; Kasevich, 2002; McGuirk et al.,
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2002; Stuhler et al., 2003).

C. Tests of Relativity

In accord with Einstein’s principle of equivalence,
atomic mass m does not enter into Equation 52. How-
ever, theories that go beyond Einstein’s general relativity
motivate the search for composition-dependent gravita-
tional forces. The principle of equivalence has been tested
accurately enough to state ∆g/g = 1.2±1.7×10−7 for the
two different Rb isotopes (Fray et al., 2004) and there are
plans based on current technology to increase the preci-
sion of this test to ∆g/g∼ 10−15 (300 times better than
current limits from any method) (Dimopoulos et al.,
2007).

Searches for a breakdown of the 1/r2 law are an-
other test of general relativity, in this case motivated by
string theories and the possibility of compact dimensions.
Experiments to detect non-Newtonian gravitational po-
tentials with multiple atom interferometers located at
different distances from the earth’s center have been
discussed in (Dimopoulos et al., 2007; Mathevet et al.,
2002). Experiments to search for a breakdown of the
1/r2 law at micrometer length scales using atom interfer-
ometry were discussed in (Dimopoulos and Geraci, 2003;
Ferrari et al., 2006).

The gravitational scalar A-B effect would be an inter-
esting test at the intersection of quantum mechanics and
gravity. If a 5 cm radius lead sphere has a small hole
in the center, Cs atoms placed there have a frequency
shift of about 7 Hz. Thus atoms at the top of their tra-
jectory could easily experience a phase shift ∼10 radians,
enabling a quantum measurement of the gravitational po-
tential. If the lead is assembled around the atoms in one
interferometer arm, or if the lead is moved into position
quickly compared to the atoms’ transit time, the effects
of the gravitational field (force) can largely be eliminated,
making this a sensitive measure of gravitational poten-
tial.

Atom interferometer rotation sensors in low earth orbit
should be able to measure the geodetic effect and possi-
bly the Lense-Thirring rotation. According to Special
Relativity, freely-falling gyroscopes orbiting in the vicin-
ity of the Earth will experience the geodetic effect caused
by the motion of the gyroscope in the gravitational field
of the earth (Jentsch et al., 2004; Schiff, 1960). For low
earth orbit, the rotation rate induced by the geodetic ef-
fect is 10−12 rad/sec, and is independent of the earth’s
rotation rate.

The Lense-Thirring rotation Thirring (1918) is a Gen-
eral Relativity effect that causes a gyroscope to rotate
relative to the fixed stars due to a massive rotating body
being nearby. It is also called the gravito-magnetic ef-
fect. In low earth orbit (700 km altitude), this can be
as large as 10−14 rad/sec and depends on the orien-
tation of the earth’s spin. Measurements of both the
geodetic effect and the Lense-Thirring effect is the objec-

tive of future space bourne atom interferometer missions
(Jentsch et al., 2004).

D. Interferometers in orbit

In addition to ultra-precise atomic clocks to improve
the atomic clocks already aloft for the GPS system,
physics experiments that could benefit from being in
space include measurements of the gravitational red-
shift, tests of Einstein’s equivalence principle, mapping
the Lense-Thirring effect close by the Earth, and mea-
surements of h/m.

NASA works on these goals with the ‘Laser Cooled
Atom Physics’ (LCAP) and ultra-precise primary atomic
reference clocks in space (PARCS) programs planned
for the international space station (Lee and Israelsson,
2003). The European Space Agency’s ‘HYPER-precision
atom interferometry in space’ project is described in sev-
eral articles in General Relativity and Gravitation, Vol.
36, No. 10, (2004) starting with (Jentsch et al., 2004)
(see Figure 54).

FIG. 54 (color online) The Mission Scenario: HYPER, which
follows a nearly polar circular orbit, will measure with two
atomic gyroscopes the two characteristic components of the
Lense-Thirring rotation as a function of latitudinal position
θ. Figure and caption reproduced from (Jentsch et al., 2004).

E. Fine structure constant and ~/M

One of the highest precision atom interferometry ex-
periments is the measurement of ~/matom This leads to
a measurement of the Molar Planck Constant, NA ×
h = Matom/matom × h × 1000 where Matom is the
atomic weight of the atom in grams and the factor of
1000 comes in converting the atomic mass into kilo-
grams. This was done at Stanford by (Weiss et al.,
1994, 1993; Wicht et al., 2002), and more recently in
Paris by Biraben and cowrokers (Battesti et al., 2004;
Clade et al., 2006). Both groups achieved a precision of
∼14 parts per billion by measuring the velocity change of
an atom due to the photon recoil (from emission or ab-
sorption). As we shall discuss, these measurements lead
to a value for the fine structure constant at ∼7ppb when
combined with other measurements.
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The underlying physics, first exploited using neutrons
by Kruger et al. (1995), is based on the deBroglie wave-
length,

λdB = h/mv. (58)

Obviously a simultaneous measurement of both λdB and
v gives h/m, where m is the mass of the neutron of the
particular atom used in the experiment. In the inter-
ferometer experiment of Chu, the measured quantity is
essentially the frequency with which an atom with the
recoil velocity (from absorbing a photon of wavevector
k)

vrec = ~k/mCs (59)

crosses the fringes in a standing wave,

ω = 2πvrec/λdB ∼ ~k2/mCs (60)

where we have replaced λdB with the wavelength of the
light causing the recoil. In the Biraben experiment, the
Doppler shift associated with this recoil is measured:

ωD = kvrec = ~k2/mRb. (61)

These frequencies are both equal to the recoil frequency
(typically 10 kHz) derived earlier from consideration of
the energy of recoil.

In the actual experiments, the measured frequency is
several times the recoil frequency. Measuring the small
recoil frequency to ppb accuracy is impossible given a
maximum free fall time for the atoms of a fraction of a
second. Hence both experiments increase the measured
velocity by contriving to add recoil velocities from the
absorption of many photons. In the Chu experiments
these are added in using up to 60 Raman pulses or adia-
batic (STIRAP) transfers; in the Biraben experiment by
accelerating an optical lattice into which the atoms are
embedded. Although the initial and final lattice speeds
are not quantized, the atoms accelerated in them always
absorb an integral number of lattice momenta (sum of
momenta in the two laser beams forming the moving lat-
tice) - up to 900 photon momenta in (Clade et al., 2006).

Both of these experiments are essentially measure-
ments of velocity, using the combined techniques of atom
optics (to add velocity) and atom interferometry to de-
tect it. This is indicated by the fact that the signal
increases linearly with the extra velocity. An interfer-
ometer configuration that uses contrast interferometry to
measure the recoil energy has been proposed and demon-
strated (Gupta et al., 2002). It shows the quadratic de-
pendence of phase shift on photon number (velocity) ex-
pected for an energy measurement, and therefore requires
that less additional momentum be added to achieve the
same precision.

An important consequence of the ~/m measurement is
to provide a very high accuracy route to the determina-
tion of the fine structure constant, α. This is based on

the relationship

α2 =

(

e2

~c

)2

=
2R∞

c

h

me
(62)

Combining atom interferometer results with indepen-
dent measurements of the optical frequency (ω =
ck) (Gerginov et al., 2006) and the mass ratios
mCs/mp (Bradley et al., 1999; Riehle et al., 1996), and
mp/me (Mohr and Taylor, 2005), and the Rydberg R∞

(Mohr and Taylor, 2005), gives a value of the fine struc-
ture constant.

602601600599598
(α -1 - 137.03) × 105

602601600599598

∆νMu

h/mn

RK

h/m (Cs)

ae
CODATA 2002

G 'p,h-90

h/m (Rb)

FIG. 55 Determinations of the fine structure constant, α, by
several methods. The value from h/m(Cs) is from atom in-
terferometry (Wicht et al., 2002) and the h/m(Rb) value is
determined with Bloch oscillations (Clade et al., 2006). Ref-
erences are given in (Mohr and Taylor, 2005) for the values
obtained from measuring the muonium hyperfine splitting
(∆νMu), or measuring the von Klitzing constant with the
quantum Hall effect (RK), or measuring recoil velocity of neu-
trons Bragg-reflecting from silicon crystals (h/mn), or mea-
suring gyromagnetic ratios (Γ′

p,h−90), or measuring electron
and positron anomalies (ae ≡ ge/2−1). Figure adapted from
(Mohr and Taylor, 2005).

The determination of α from h/mCs has a precision
of 7 ppb (Wicht et al., 2002), and from Rb of 6.7 ppb
(Clade et al., 2006). Thus this route already offers the
second most accurate value of α (after the measurement
of g-2 for the electron), and therefore allows the most
precise comparison across different subfields of physics,
as shown in Figure 55. It essentially offers a comparison
of QED with such things as the deBroglie wavelength
relationship and calculations of atomic structure in hy-
drogen. Such cross-field comparisons are extraordinar-
ily important for the unity and global understanding of
physics, and provide one of the few routes to discover un-
derlying errors in an isolated subfield. It is interesting to
note that several of the values appearing in figure 55 have
been substantially re-evaluated between 1998 and 2002,
which proves that the fine structure constant is not so
well known (it is known mostly due to the electron spin
anomaly).

No precision experiment is easy, and the h/m measure-
ments discussed here experience difficulties from vibra-
tion that changes the velocity of the reference light waves
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(the scheme in (Gupta et al., 2002) demonstrated vibra-
tional insensitivity), stray field gradients, etc. Other
sources of noise and systematic error in these experiments
include the index of refraction for light due to the atomic
ensemble (Campbell et al., 2005; Wicht et al., 2002), ac-
Stark shifts for the atomic energy levels due to the laser
fields (Wicht et al., 2002, 2005), beam mis-alignment and
wavefront curvature (Gibble, 2006; Wicht et al., 2002),
and mean field shifts for the atomic energy states due
to interaction with nearby atoms(Gupta et al., 2002;
Le Coqet al., 2006).

Still, the accuracy of these atom interferometric meth-
ods for measuring h/m is increasing due to the rapid over-
all progress in atom interferometry with cold atoms and
because sources of error are being understood and over-
come. It is certain that the accuracy of h/m will soon be
improved in both Rb and Cs, which employ significantly
different atom optics methods. This might mean that
the real limit of confidence in this route to α would be
in the measurements of the atomic masses of Rb and Cs
for which there is only one high precision measurement
(Bradley et al., 1999), and that had unexplained system-
atic errors at the 0.2ppb level. We know of no other ex-
periments planned that could check these heavy masses,
whereas there are two or more measurements of both the
Rydberg and electron mass ratios that are consistent.

Here is more detail on the Chu group experiment, de-
scribed in (Weiss et al., 1994, 1993; Wicht et al., 2002).
To determine h/m they measure the relative frequency
of the final π/2 pulses in two different atom interferom-
eters (Figure 56). The frequency difference between the
resonances of the two interferometers depends only on
conservation of energy and conservation of momentum.
As an example of the recoil shift, consider a simplified ex-
periment (Weiss et al., 1994) where an atom (with mass
m) in state |a〉 with zero velocity in the laboratory frame
first absorbs a photon from a leftward propagating laser
beam with frequency ω. The atom recoils by ~k/m and
the process has a resonance condition

ω − ωab =
~k2

2m
(63)

where ~ωab is the energy difference between atomic states
|b〉 and |a〉 at rest. The atom can then be de-excited
by a rightward propagating beam with frequency ω′. It
receives another velocity kick ~k′/m in the same direction
and the new resonance condition is

ω′ − ωab = −~kk′

m
− ~k′2

2m
. (64)

The two resonances are shifted relative to each other by

∆ω = ω − ω′ = ~(k + k′)2/2m. (65)

Furthermore, the resonance condition for an atom in |b〉
moving with velocity (N − 1)vrec towards a laser beam
is

ω′ − ωab ≈
~k2

2m

[

(N − 1)2 − (N)2
]

(66)

so that

∆ω ≈ N~k2

m
(67)

where N is the total number of photon recoil momenta
imparted to the atom and the approximation comes from
the fact that k′ ≈ k. This shows why ∆ω depends linearly
on N .

FIG. 56 (a) A double interferometer where the two interfering
pairs have their velocities shifted with respect to each other
by four photon recoils. Solid lines indicate atoms in internal
state a, and dashed lines represent internal state b. (b) Sets
of Ramsey fringes displaced by 2π∆ω (due to 8 π pulses in
the middle of the interferometers). Only the frequency of the
final two π/2 pulses is scanned. Figure from (Weiss et al.,
1994).

VI. ATOMIC PHYSICS APPLICATIONS

A major motivation for atom interference experiments
is to learn more about atoms and molecules themselves.

Atoms in a separated beam interferometer experience
a phase shift if a uniform but different potential is ap-
plied to each arm. Thus interferometers offer exquisite
sensitivity to the potentials (not just forces). This sen-
sitivity has been used to measure the index of refrac-
tion due to other atoms and energy shifts due to elec-
tric and magnetic fields. We emphasize that de Broglie
wave phase shift measurements bring spectroscopic preci-
sion to experiments where usually classical methods like
beam deflection or velocity measurement were applied,
as discussed in Sections I - IV.

In another application, the nanogratings used as a de
Broglie wave gratings can function as a very gentle spec-
trometer that diffracts different molecular species in a
molecular beam to different angles.

The nanostructures themselves also produce poten-
tials due to atom-surface interactions that have been
measured with interferrometric techniques. For gratings
with 50-nm wide slots, each transmitted atom must pass
within 25 nm of a grating bar; hence the measured in-
tensities are affected by the non-retarded vdW potential.
With larger gratings, on the other hand, the Casimir-
Polder potential has been probed.
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A. Discovery of He2 molecules

One stunning application of coherent atom optics laid
to rest a long standing argument concerning whether a
stable bound state of the 4He2 dimer exists. (The at-
tribution of He+

2 to He2 dimers formed in cryogenic ex-
pansion by (Luo et al., 1993) primarily reopened an old
debate). For this a diffraction grating was used to sepa-
rate and resolve 4He2 dimers from a helium beam (Fig-
ure 57) (Schollkopf and Toennies, 1996). Subsequently a
grating was used as a nano-sieve to measure the size of
the 4He2 dimers. They have a size of 〈r〉 = 6.2 ± 1.0
nm which corresponds to a binding energy of E/kB =
1 mK (Grisenti et al., 2000a; Luo et al., 1996). Diffrac-
tion has also been used to study the formation of more
massive clusters (Bruhl et al., 2004), and searches us-
ing this technique are underway for an Efimov-type
excited state in 4He3. This would be manifest as a
particularly large (〈r〉 = 8.0 nm) excited state helium
trimer. (Bruhl et al., 2005; Hegerfeldt and Stoll, 2005;
Stoll and Kohler, 2005).

B. Polarizability measurements

1. Ground state dc scalar polarizability

By inserting a metal foil between the two separated
arms, as shown in Fig. 58, an electric field can be ap-
plied to a single path. The resulting de Broglie wave
phase shift was used to measure the static ground-state
atomic polarizability of sodium, αNa with a precision
of 0.35% (Ekstrom et al., 1995). Similar precision has
been demonstrated for αHe (Toennies group) and αLi

(Vigué group) using this method (Miffre et al., 2006b,c;
Toennies, 2001).

In this experiment a uniform electric field E is applied
to one of the separated atomic beams, shifting its energy

FIG. 57 Diffraction of helium atoms and helium molecules
through a nano-fabricated grating. These data, reproduced
with permission from Wieland Schoellkopf, were obtained at
the Max-Planck-Institute in Göttingen.

by the Stark potential U = −αE2/2. The static scalar
ground-state polarizability αpol is determined from the
phase shift, ∆φ, of the interference pattern by

αpol =

(

∆φ

V 2

) (

D2

Leff

)

(2~v), (68)

where V is the voltage applied to one electrode in the in-
teraction region, D is the distance between the electrode
and the septum, v is the mean velocity of the atomic
beam, and Leff is the effective interaction region length
defined as

(

V

D

)2

Leff ≡
∫

E2dz. (69)

For an accurate determination of electric polarizability,
the three factors in Equation 68 must each be determined
precisely. They are (1) the phase shift as a function of
applied voltage, (2) the geometry and fringing fields of
the interaction region, and (3) the velocity of the atoms.
In (Ekstrom et al., 1995) the uncertainty in each term
was less than 0.2%.

Taking all sources of error into account, and adding
statistical and systematic errors in quadrature, the static
polarizability of the ground state of sodium was measured
to be αpol = 24.11× 10−24 cm3, with a fractional uncer-
tainty of 0.35%. This measurement was a nearly 30 fold
improvement on the best previous direct measurement of
the polarizability of sodium (Hall and Zorn, 1974) based
on beam deflection.

A similar experiment for He was done with a 3-grating
Mach Zehnder interferometer (with nanogratings) by the
Toennies group. The phase stability of this interferome-
ter was so good that the fringes could be observed directly
as a function of applied electric field, while the gratings
were not moved. (Figure 59). The statistical precision in
αHe was 0.1% (Toennies, 2001).

FIG. 58 Measurement of atomic polarizability. (a) Schematic
of the interaction region installed behind the second grating.
(b) Measured phase shifts vs. applied voltage. The two dif-
ferent signs of the phase shift stem from the voltage being
applied on either the left (open circles) or the right (filled cir-
cles) side of the interaction region (arm of the interferometer).
The fit is to a quadratic and the residuals are shown on the
lower graph. Figure from (Schmiedmayer et al., 1997).
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Using three Bragg diffraction gratings for Li atoms and
a septum electrode, the group of Vigué measured αLi

with a precision of 0.66% (Miffre et al., 2006b,c).
Because atom interferometry gives sub-Hertz precision

on the energy shift of the atomic ground state, ratios of
polarizabilities for different species can be very accurately
determined with multi-species atom interferometers. Un-
certainty in the interaction region geometry would then
be less significant because the quantity (D2/Leff ) in Eq
68 cancels out in a ratio of, for example, αRb/αLi. The
ratio of velocities of the two species would still need to
be measured, or taken into account. Thus, improved
precision in measurements of αpol may come from us-
ing an engineered phase shift to cancel the velocity-
dependence of the polarizability phase shift. This is
known as dispersion compensation (Roberts et al., 2004).
Velocity multiplexing (Hammond et al., 1995) and mag-
netic re-phasing (Schmiedmayer et al., 1994) are other
approaches for dealing with the experimental spread in
velocity. With these improvements it seems feasible to
perform polarizability measurements with uncertainties
in the 10−4 range.

FIG. 59 Measurement of the electric polarizability of He.
The gratings are held stationary while the electric field is
increased. The measurement uncertainty is statistical only.
Figure courtesy of J.P. Toennies and R. Breuhl.

This precision offers an excellent test of atomic theory,
because theoretical uncertainties in light elements like Li
are orders of magnitude smaller than in heavier alkalis.
Polarizability αpol of an atomic state can be expressed as
a sum over dipole matrix elements:

αpol = e2
∑

j 6=i

〈i|r|j〉〈j|r|i〉
Ej − Ei

(70)

where Ej is the energy of state |j〉. Accurate calcula-
tion of static dipole polarizabilities for heavy atoms still
remains a great challenge because electron correlation
and relativistic effects become increasingly important for

heavy atoms. Major theoretical efforts so far have in-
cluded the relativistic Hartree Fock approach, many body
perturbation theory, density functional theory, and rel-
ativistic coupled-cluster technique. Several calculations
of atomic polarizability all show the need for precise ex-
perimental measurements (Bonin and Kadarkallen, 1994;
Derevianko et al., 1999; Derevianko and Porsev, 2002;
Hagen, 2000; Kharchenko et al., 1997; Kronik et al.,
2001; Lim et al., 1999; Maroulis, 2001; Rerat et al., 1998;
Safronova et al., 1999; Thakkar and Lupinetti, 2005).

2. Transition dc and ac Stark shifts

When two paths have different internal states, e.g. in
an optical Ramsey Bordé interferometer, then a uniform
electric field applied to both paths makes phase shifts
proportional to the difference of polarizability of the two
states. (This is similar to what can be measured with
laser spectroscopy.) For example, the dc-Stark shift of
the magnesium 3s2(1So)-3s3p(3P1) intercombination line
was measured by subjecting both arms of an atom inter-
ferometer to a constant electric field. The Stark energy
perturbation provides two different potentials in the two
arms of the interferometer. The resulting relative phase
shift (Figure 60) corresponds to a difference of -(8 ± 1)
kHz (kV/cm)−2 in the polarizabilities of the 1So and the
3P1(m = 1) states. (Rieger et al., 1993).

FIG. 60 Optical Ramsey Bordé interferometer for measuring
polarizability differences. (a) Schematic of the atom interfer-
ometer with a capacitor. (b) Frequency shift of the interfer-
ence pattern versus voltage across the capacitor. The fit is a
parabola. The inset shows the energy levels as a function of
position through the capacitor. (Rieger et al., 1993)

A related approach was used to measure the difference
between the polarizabilities of the 3P1 state and the 1So

state of Ca to be α(3P1)-α(1So) = (13 ± 2) × 1024 cm3

(Morinaga et al., 1996a).
The ac Stark shift of the 4s2

1So 4s4p3P1 line in 40Ca
was measured with a time-domain Ramsey-Bordé atom
interferometer (in a magneto optical trap) for perturb-
ing laser wavelengths between 780 nm and 1064 nm.
(Degenhardt et al., 2004). Ac Stark shifts have also been
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observed in a double-well interferometer (Shin et al.,
2004).

C. Index of refraction due to dilute gasses

A physical membrane separating the two paths al-
lows insertion of a gas into one path of the interfering
wave, enabling a measurement of the index of refraction
for atom waves traveling through a dilute gas caused
by the collision-induced phase shift. Measurements
are presented in (Kokorowski et al., 1997; Roberts et al.,
2002; Schmiedmayer et al., 1995, 1997) and these ex-
periments are discussed in (Audouard et al., 1995,
1997; Blanchard et al., 2003; Champenois et al., 1997;
Forrey et al., 1996, 1997; Kharchenko and Dalgarno,
2001; Vigué, 1995).

Scattering makes a wave function evolve as:

ψ
r→∞−→ eikr + f(k,k′)

eik′r

r
, (71)

where the scattering amplitude f contains all the infor-
mation about the scattering process (Sakurai, 1994). The
complex index of refraction n due to a gas of scattering
centers is related to f by summing the scattered ampli-
tudes in the forward direction (Newton, 1966), resulting
in

n = 1 +
2πN

k2
f(k,k) (72)

where N is the gas density. Atoms propagating through
the gas are phase shifted and attenuated by the index

ψ(z) = ψ(0)einkz = ψ(0)eikzei∆φ(N,z)e−
N
2 σtotz. (73)

The phase shift due to the gas,

∆φ(N, z) = (2πNkz/kcm)Re[f(kcm)], (74)

is proportional to the real part of the forward scatter-
ing amplitude, while the attenuation is related to the
imaginary part. Attenuation is proportional to the total
scattering cross section which is related to Im[f ] by the
optical theorem

σtot =
4π

kcm
Im[f(kcm)]. (75)

Measurements of phase shift as a function of gas density
are shown in Figure 61.

The ratio of the real and imaginary parts of the forward
scattering amplitude is a natural quantity to measure and
compare with theory. This ratio,

ρ(k) =
∆φ(N)

ln[A(N)/A(0)]
=

Re[f(k)]

Im[f(k)]
. (76)

where A is the fringe amplitude, gives orthogonal infor-
mation to the previously studied total scattering cross

FIG. 61 (Left) Phase shift ∆φ as a function of gas density N
for different gas samples. (Right) Phase shift vs Fringe am-

plitude. The fringe amplitude is proportional to e−Nσtotz/2.
Figure from (Schmiedmayer et al., 1997).

section. In addition it is independent of the absolute
pressure in the scattering region and therefore much bet-
ter to measure.

The ratio ρ(k) shows structure as a function of k known
as glory oscillations13 (Figure 62). These were predicted
in (Audouard et al., 1995, 1997; Forrey et al., 1997) and
observed in (Roberts et al., 2002). Measurements of ρ(k)
plotted as a function of Na beam velocity v for target
gases of Ar, Kr, Xe, and N2 are shown in Fig. 62.

To compare these measurements with predictions
based on various potentials V (r), the forward scatter-
ing amplitude was computed using the standard partial
wave treatment and the WKB approximation. Predic-
tions for ρ must also include an average over the distri-
bution of velocities in the gas sample, and this damps
the glory oscillations as discussed in (Champenois et al.,
1997; Forrey et al., 1997). Fig. 62 shows calculations
of ρ(v) based on predictions of V (r) for Na-Ar, Na-Kr
and Na-Xe derived from spectroscopic measurements and
beam scattering experiments.

The motivation for studying the phase shift in colli-
sions is to add information to long-standing problems
such as inversion of the scattering problem to find the
interatomic potential V (r), interpretation of other data
that are sensitive to long-range interatomic potentials,
and description of collective effects in a weakly inter-
acting gas (Bagnato et al., 1993; Chadan and Sabatier,
1989; Cline et al., 1994; Lett et al., 1993; Moerdijk et al.,
1994; Moerdijk and Verhaar, 1994; Stoof, 1991;
Stwalley et al., 1994; Walker and Feng, 1994). The
glory measurements of ρ are sensitive to the shape of
the potential near the minimum, where the transition

13 Glory oscillations in the absorption cross section were first
measured by Rothe (1962) for Li and K beams, and related phe-
nomena with light waves have been studied by (Bryant and Cox,
1966; Cheville et al., 1998; Khare and Nussenzveig, 1977;
Nussenzveig, 1979).
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FIG. 62 ρ as measured for Na waves in Ar,
Kr, Xe, and N2(• using 200 nm gratings, ◦ 100
nm), showing evidence of glory oscillations in com-
parison to ρ as derived from predicted potentials:
Na-Ar (Champenois et al., 1997)(—), (Duren and Groger,
1978)(−−−), (Forrey et al., 1997)(· · · ),(Tellinghuisen et al.,
1979)(· − ·−), (Tang and Toennies, 1977)(· · − · ·−); Na-
Kr (Champenois et al., 1997)(—), (Duren et al., 1968)(− −
−); and Na-Xe (Baumann et al., 1992)(—), (Duren et al.,
1968)(−−−). Figure from (Roberts et al., 2002).

from the repulsive core to the Van der Waals potential
is poorly understood. The measurements of ρ(k) also
give information about the rate of increase of the
interatomic potential V (r) for large r independently of
the strength of V (r). The real part of f was inaccessible
to measurement before the advent of separated beam
atom interferometers. Controlled collisions as phase
shifting tools are now widely discussed in the context of
quantum computing.

D. Casimir-Polder (atom-surface) potentials

Atom-surface interactions are important in a wide
range of nanoscale phenomena, including gas adsorp-
tion, atomic force microscopy, quantum reflection, Atom-
Chips, and many topics in biophysics and chemistry. Yet
in many situations the forces are difficult to predict ab
initio. Single atoms passing within 50 nm of a dielectric
surface represent a nice middle ground, where theoretical
calculations are tractable, and precision measurements
are becoming possible. Here we briefly describe some
landmark theoretical contributions to this field and then
survey measurements done with coherent atom optics.

After J.D van der Waals suggested modifications to
the equation of state for gases to allow for atom-atom
interactions (which he did in 1873), London (1937) cal-
culated the strength of interactions between two po-
larizabile atoms using quantum mechanics, and similar
ideas were used to describe atom-surface interactions
(Lennard-Jones, 1932). Casimir and Polder (1948) gen-
eralized the theory of atom-surface interactions to include
the effect of retardation, and Lifshitz (1956) modified this
theory to allow for a surfaces with a dielectric permittiv-
ity. Since then, hundreds of theoretical works used quan-
tum electrodynamics to predict the interaction potential
for real atoms near real surfaces.

The Casimir-Polder potential for an ideal surface
(Casimir and Polder, 1948; Sukenik et al., 1993)

U(r) =
1

4παr4

∫ ∞

0

αpol(ix/αr)e
−2x[2x2 + 2x+ 1]dx

(77)
where αpol is atomic polarizability (evaluated as a func-
tion of imaginary frequency), r is the distance to the
surface, and α is the fine structure constant. This has
well-known limits of the Van der Waals (vdW) regime

r → 0 U(r) =
~

4πr3

∫ ∞

0

αpol(iω)dω ≡ C3

r3
(78)

and the retarded regime

r →∞ U(r) =
2hcαpol(0)

32πǫ0r4
≡ −K4

r4
. (79)

Marinescu et al. (1997) evaluated U(r) for sodium atoms
at arbitrary distances from a perfectly conducting half
space, using a single electron (Lorenz oscillator) model of
the atom. Derevianko et al. (1999) calculated C3 for the
alkali atoms using the best available model of frequency-
dependent atomic polarizability. It is noteworthy that
18% of the interaction potential between sodium atoms
and a perfect mirror is due to excitations of the core elec-
trons. The one-electron (Lorenz) oscillator model yields
C3 = ~ω0αpol(0)/8 with αpol(0) = e2/ω2

0me[4πǫ0] where
ω0 the resonance frequency and me the electron mass.
This one-electron model for sodium atoms and a per-
fectly conducting surface gives C3 = 6.3 meV nm3, while
the calculation with many electrons gives C3 = 7.6 meV
nm3. The Lifshitz formula

C3 =
~

4π

∫ ∞

0

αpol(iω)
ǫ(iω)− 1

ǫ(iω) + 1
dω. (80)

reduces C3 even further. For sodium and silicon nitride
the Lifshitz formula gives C3 = 3.2 meV nm3. Spruch
(1993) and (Zhou and Spruch, 1995) elaborated on U(r)
for arbitrary r and surfaces composed of multiple layers.

Several experiments can now test these predictions.
Atoms transmitted through a cavity (Anderson et al.,
1988; Sukenik et al., 1993), atoms diffracted from a ma-
terial grating (Bruhl et al., 2002; Cronin and Perreault,
2004; Grisenti et al., 1999, 2000b; Perreault et al.,
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FIG. 63 Distorted de Broglie waves. Van der Waals inter-
actions with mechanical grating bars cause near-field phase
shifts. This view is exaggerated: in beam experiments there
are typically 104 wave fronts in the 100 nm thickness of a
nanograting slot (Grisenti et al., 1999; Perreault et al., 2005).

FIG. 64 The Phase (a) and modulus (b) of far-field diffraction
orders both depend on the vdW coefficient C3 divided by
atom velocity [shown in units of meVnm3 / (km/s)]. Figure
adapted from (Perreault and Cronin, 2006).

2005; Shimizu, 2001), atoms undergoing quantum
reflection (Anderson et al., 1986; Berkhout et al.,
1989; Druzhinina and DeKieviet, 2003; Pasquini et al.,
2006; Shimizu, 2001; Shimizu and Fujita, 2002a),
atoms reflecting from evanescent waves near surfaces
(Esteve et al., 2004; Hajnal et al., 1989; Kaiser et al.,
1996; Westbrook et al., 1998), and atoms trapped
near surfaces (Harber et al., 2005; Lin et al., 2004;
McGuirk et al., 2004) and atoms in interferometers
(Brezger et al., 2002; Kohno et al., 2003; Nairz et al.,
2003; Perreault and Cronin, 2005, 2006) have been used
to measure atom-surface interaction potentials. For
a review of several such experiments see the CAMS
proceedings (CAMS, 2005).

1. VdW-modified diffraction

Because of van der Waals interactions with mechanical
grating bars, atoms propagating through a nanograting
get a phase shift that depends on position within each
slot, as shown in Figure 63. An analogous structure
in light optics is an array of diverging lenses held
between absorbing bars. The index of refraction in

FIG. 65 Diffraction intensities used to measure the strength
of C3 for Na-silicon nitride (Perreault et al., 2005). Data for
two different velocities show how the 2nd and 3rd order change
their relative intensity (as predicted in Figure 64). Diffraction
of Na2 molecules is also visible.

the free-space between material grating bars gives
nanogratings a complex transmission function that
has been studied in (Brezger et al., 2002; Bruhl et al.,
2002; Cronin and Perreault, 2004; Grisenti et al.,
1999, 2000b; Kohno et al., 2003; Nairz et al., 2003;
Perreault and Cronin, 2005, 2006; Perreault et al., 2005;
Shimizu, 2001).

Figure 63 is a cartoon of the de Broglie wave phase
fronts in the near-field immediately after a nanograting.
Far-field diffraction orders are affected by van der Waals
interactions too. We can describe the nth far-field order
by

ψn = Ane
iφnei~kn·~x (81)

where the modulus An and phase φn for the nth order
are given by

Ane
iφn =

∫ w/2

−w/2

exp [iφ(ξ) + inGξ] dξ. (82)

Here w is the size of the windows (or ‘nano-slots’) be-
tween grating bars, and φ(ξ) is the phase-shift sketched
in Figure 63 that can be calculated by putting the atom-
surface potential U(r) into the expression for a phase
shift (Equation 43). Thus the modulus and a phase of
each diffraction order depends on the strength of the po-
tential (C3 in the vdW regime) and on atomic veloc-
ity as shown in Figure 64. Several experiments have
measured the intensity |An|2 in diffraction orders to de-
termine C3 for various atom-surface combinations, with
some results shown in figures 65 and 66) (Bruhl et al.,
2002; Cronin and Perreault, 2004; Grisenti et al., 1999;
Perreault et al., 2005).

The diffraction intensities |An|2 depend on phase gra-
dients induced by U(r). To detect the diffraction phases,
φn, an atom interferometer can be used as described in
the next Subsection.

2. Interferometer VdW and CP measurements

The complex transmission function of the gratings
modifies the location at which the Talbot effect re-
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FIG. 66 Measurements of C3 for various atoms and a silicon
nitride surface, obtained by studying atom diffraction pat-
terns (Grisenti et al., 1999).

FIG. 67 Dependence of the interference fringe visibility on
the mean velocity of the molecular beam. Numerical sim-
ulation results are plotted for four models without free pa-
rameters: classical or quantum behavior, with or without
consideration of the van der Waals (vdW) interaction of the
molecules with the second grating. The quantum result in-
cluding the van der Waals effect is clearly the only adequate
theory (Brezger et al., 2002).

vivals occur. This, in turn, modifies the perfor-
mance of a Talbot-Lau interferometer, as discussed in
(Brezger et al., 2003, 2002) and shown in Figure 68. Be-
cause gratings in this experiment have a 1 µm period,
these results probe the retarded Casimir-Polder regime.

In a separated-path interferometer,
Perreault and Cronin (2005) inserted an auxiliary
interaction grating in one path. This allowed a measure-
ment of the phase shift φ0 due to transmission through
the interaction grating as shown in Fig. 68. In a sep-

FIG. 68 An ‘interaction grating’ was inserted and removed
from each path of an interferometer to measure the phase shift
Φ0 due to Van der Waals interactions (Perreault and Cronin,
2005).

arate experiment the higher-order diffraction phase φ2

was measured by comparing the output of four different
separated-path interferometers (Perreault and Cronin,
2006).

In the Atomic Beam Spin Echo (ABSE) interferometer,
discussed in III.D.2, Druzhinina and DeKieviet (2003)
observed atoms reflecting from the attractive part of
the atom-surface interaction potential. This quantum
reflection allowed DeKieviet et al to map the van der
Waals potential in an energy range between 1 neV and
a sub-meV. Figure 69 shows the measured probability
of He atoms quantum reflecting from a quartz surface,
as a function of the impinging wavevector. (Later both
metallic and semi-conductor samples were used.) De-
viation of the experimental data from the high-energy
asymptote is attributed to Casimir-Polder retardation.
importantly the spin echo interferometer was used to
precisely select the velocity of the detected atoms. In
this regard it complements other quantum reflection ex-
periments (Anderson et al., 1986; Berkhout et al., 1989;
Pasquini et al., 2006; Shimizu, 2001; Shimizu and Fujita,
2002a) that do not explicitly use atom interferometers
(though we note that quantum reflection itself is inher-
ently a wave phenomenon).

VII. OUTLOOK

In the early 1980’s “Mechanical Effects of Light” was
the name for the study of light forces on atoms. See,
for example, (Chebotayev et al., 1985) and Table VI. At
first these forces were used simply to change the mo-
mentum of atoms. Then it emerged that, with care in
application, light forces could be conservative. When
atom diffraction from a standing light wave was demon-
strated (Gould et al., 1986), it became appreciated that
interactions with classical light fields can transfer mo-
mentum in precise quanta and preserve the coherence
of atomic de Broglie waves. This led to many pa-
pers contrasting “Diffraction and Diffusion” and empha-
sizing that diffraction of atoms by light was coherent,
whereas the occurrence of some spontaneous decay pro-
cesses led to diffusion which is not coherent (Deng, 2006;
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FIG. 69 Experimental ABSE data for the quantum reflection
of 3He atoms from a disordered single crystal quartz surface.
(Druzhinina and DeKieviet, 2003)

Gould et al., 1991; Ryytty et al., 1998; Tanguy et al.,
1983; Wilkens et al., 1991). It also led workers in the field
to consider other coherent ways to manipulate atoms.
The term “optics” started to replace “diffraction” in con-
versations. Although some felt that “atomic optics” was
the preferable phrase (in part to emphasize that atomic
physics was the driving force), we felt that “Atom Op-
tics” was more closely analogous to “electron optics” and
decided to make it the title of our 1991 review in ICAP12
(Pritchard, 1991). Perhaps nothing shows the growth of
this field, and the coalescence around this phrase, more
than the fact that there are almost 200,000 Google hits to
“Atom Optics” plus over 20,000 for atom interferometers
(and even fewer than this for “atomic optics”).

The reviews on Atom Optics that the MIT group wrote
in 1990 and 1991 considered Atom Optics as a way to
mimic photon optics. Relative to a list of standard opti-
cal components, it was pointed out that atom lenses could
be made in various ways but that material beamsplitters
were impossible, shifting the burden for coherent beam-
splitting and recombining to diffractive processes using
matter and light gratings. The observation that light
and matter diffraction gratings would be the beamsplit-
ters has been borne out by the vast majority of work with
atom interferometers over the past 15 years. However,
their refinement has been quite remarkable. In addition,
a host of new developments in atom optics have greatly
lengthened the list of atom optical components and de-
vices – see the Atom Optics Toolkit in Table V. The art
of atom optics is in its golden age because the techniques
listed in this toolkit are just beginning to have an impact
on scientific questions beyond the specialty of atom op-
tics. As larger and more controlled atom optical systems
are constructed, opportunities abound to efficiently and
coherently manipulate atoms for scientific gain.

Not all predictions in (Pritchard, 1991) were so

prescient however; although coherent atom amplifiers
were discussed, they were not anticipated. Hence the
demonstration of coherent atom amplification (using
interferometry to verify its phase coherence) was an
unexpected development, as was non-linear atom optics
generally. The power of, and interest in, non-linear
atom optics should lead to many more advances in atom
interferometry such as sub-shot noise measurements of
phase shifts (Jo et al., 2007; Pezze and Smerzi, 2006;
Scully and Dowling, 1993; Search and Meystre, 2003),
and coherent oscillations between atomic and molecular
BEC’s. Non-linear optics is outside the scope of this
paper although techniques of linear atom optics and in-
terferometry are extremely valuable as tools in this field
(Anderson and Meystre, 2003; Bongs and Sengstock,
2004; Meystre, 2001; Rolston and Phillips, 2002). An-
other unanticipated development is the immense amount
of development on atom chips.

As this review shows, experimental and theoretical un-
derstanding of atomic and molecular matter waves has
come a long way since the first demonstrations of coher-
ent diffraction with laser light and nanogratings in the
early 1990’s. In the MIT group’s first paper on diffrac-
tion by a light grating, the rms momentum transfer was
far below predictions; the second paper reported it was
low by a factor of two noting there was “no explanation
for this discrepancy”. Recently this effect was used to
measure the standing wave intensity of a standing wave
(depth of optical lattice) to within 1% (Mun et al., 2007).

This shows the transformation of pioneering scien-
tific work in atom optics into a high-precision tool for
use in cold atom physics. Similarly, our review shows
that atom interferometers are now routinely used for
scientific endeavors ranging from fundamental investiga-
tions of quantum physics to precision metrology. We
now briefly project anticipated progress over the main
categories used in this review (diffraction, interferome-
try, fundamental studies, precision measurements, and
atomic properties). We also speculate on areas that we
expect will become more important: e.g. optics with
molecules and ultracold fermions, atom chips and optical
lattices, surface science, fundamental studies of gravita-
tion, new ways to control atom-atom interactions, en-
tanglement and multi-particle interferometry, and more
formal analogies to condensed matter phenomena that
arise from quantum coherence.

We expect coherent atom optics to become an even
more flexible, powerful, and precise tool for manipu-
lating atoms and molecules, especially for interferome-
ters, and for applications to other scientific and technical
problems. The development of techniques for acceler-
ating (and in the future decelerating) atoms and espe-
cially molecules, both in light crystals and by optimiz-
ing the temporal envelope of light for higher-order beam
splitters will enable coherence to be maintained between
wave function components with relative velocities of me-
ters/sec that are determined with 10−10 accuracy. This
will result in interferometers of far greater precision with
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TABLE V Atom optics tool kit organized by analogy to light optics, as in (Pritchard, 1991). Parentheses () indicate options.

Light Optics Atom Optics

SOURCES thermal (supersonic) beam

(moving) molasses, launched (or dropped) MOT, Zeeman slower

coherent LASER Bose Einstein condensate

LENSES spherical electrostatic quadrupole or magnetic hexapole

cylindrical Gaussian optical beams

Fresnel nano structure zone plates (cyl. or sph.)

achromat combination zone plate + E-M lens

axicon magnetic quadrupole

MIRRORS (giant) quantum reflection

helium from (bent) crystal surfaces

evanescent light waves

periodically poled magnetic domains (on curved surfaces)

GRATINGS phase standing waves of light: Bragg, or Kapitza-Dirac (pulses)

amplitude nano-structure gratings

standing waves of resonant radiation

reflection crystal surfaces

quantum reflection from (nano-structured) surfaces

structured evanescent light

blazed Bragg scattering

two- and three-color standing waves

POLARIZING SPLITTERS stimulated Raman transitions

optical Ramsey π/2 pulses

Stern-Gerlach magnets

optical Stern-Gerlach effect

PHASE PLATES glass E-field

B-field

dilute gas

nearby surface

HOLOGRAMS transmission perforated nano-structures (with E and B fields)

reflection nano-structures (with enhanced quantum reflection)

λ SHIFTERS modulators amplitude modulated standing waves

gravity

bi-chromatic laser fields

reflection from a receding rotor

INTERFEROMETERS Young’s experiment micro (or nano) slits

Mach-Zehnder space domain using (separated) beams (spin entanglement)

time domain, with pulsed gratings (spin entanglement)

longitudinal (RF or Stern-Gerlach beam splitters)

near field Talbot Lau, Lau, and Talbot interferometers

Michelson atoms confined in a waveguide

Fabry-Perot atoms confined in a 3-dimensional trap

WAVEGUIDES fiber optics B fields from wires (on a chip)

permanent magnets

optical dipole force

evanescent light in hollow fiber

DETECTORS photon counter hot wire (or electron bombardment) ionizer and counter (CEM or MPC)

state selective field ionization, laser ionization, metastable detection

polarization spectroscopy

imaging multichannel plate for ions or (metastable) atoms

(state selective) fluorescence, absorption, or phase contrast imaging

AMPLIFIERS stimulated emission four-wave mixing with BEC [nonlinear quantum optics]



65

much greater separation of the arms and much greater
enclosed area.

These bigger and better interferometers will be applied
to fundamental problems in gravity and quantum me-
chanics. They will allow one to measure the gravita-
tional potential in experiments analogous to the scalar
Aharonov-Bohm effect in which the potential has in-
fluence in the absence of any gravitational field (such
as when one component of the wave function spends
time inside a hollow massive cylinder). Placed in orbit
around earth, interferometers with large enclosed area
will be useful for fundamental gravitational measure-
ments such as tests of parallel vector transport and the
Lense-Thirring frame-dragging effect. As a byproduct
of developing interferometers with larger separation for
heavier particles, more stringent limits will placed on al-
ternative theories of quantum decoherence that involve
spontaneous projection. It may also be possible to ob-
serve some new sources of decoherence that are hard to
shield out (Tegmark, 1993). These advances in inter-
ferometer size will also enable better measurements of
inertial effects such as gravitational fields, gravitational
gradients, and in gyroscopes. These will have application
to inertial navigation, geodesy, and prospecting.

Precision in atom and molecular interference experi-
ments will also be increased by using higher fluxes and
longer interaction times. This also implies larger instru-
ments in order to reduce the atom densities, thus re-
ducing the systematic shifts due to atom-atom interac-
tions. However, more imaginative approaches are needed
since atom-atom interactions can be a severe problem.
For example, they are one of the limiting factors for the
Cs atomic fountain clocks, all interferometers using Bose
Einstein condensates, and they modify the index of re-
fraction of near-resonant light passing through even non-
degenerate atom samples. There are at least two solu-
tions to the problem:

• If one uses ultracold fermions in a single atomic
state, the Pauli exclusion principle switches off the
s-wave interaction. Since for neutral atoms at ul-
tracold energies the higher partial waves can be
ignored, a fermionic ensemble is nearly interac-
tion free, and therefore ideal for precision measure-
ments. This was nicely demonstrated in the Bloch
oscillation experiment by (Pezze et al., 2004).

• The second solution is to put each atom in a sep-
arate potential well, for example in an optical lat-
tice. Having only one atom per well vastly reduces
the nonlinear interaction. The effects of these ad-
ditional potential wells can be mitigated by us-
ing light that energy shifts the interfering states
equally.

Application of atom interferometers to atomic and
molecular physics will benefit from advances in precision
and should continue to provide definitive measurements
with higher precision. A key application will be determi-
nation of polarizabilities and stark shifts for atoms and

molecules in applied fields. These will serve as bench-
mark measurements to test and refine atomic theory cal-
culations as discussed in Section V.

Since atoms are very small, techniques for their ma-
nipulation on small scales will open up many scientific
frontiers and technical possibilities in surface physics,
nanophysics, and quantum information. The rapid pace
of current developments in atom chips, and the more
creative use of focused light beams and light crystals
are both leading to techniques for producing, detecting,
and coherently manipulating atoms on very small spatial
scales, e.g. where tunneling can be carefully studied.

Small interferometers will enable novel applications in
surface science. Atom interferometry can be used to (a)
measure fundamental atom-surface interactions like the
Van der Waals and Casimir potentials or (b) study the
temporal and spatial behavior of electro-magnetic fields
close to the surface. This will allow new probes of sur-
face structure- both magnetic and electric. The nature
of thermally induced time varying fields can be studied,
both for its own sake and because such fields induce de-
coherence. This will lead to engineering advances that
reduce deleterious decoherence close to surfaces, advanc-
ing quantum information technology that uses ions and
atoms close to surfaces as q-bits.

Coherent atom optics generally, and interferometers
in particular, will be applicable to a central problem in
quantum information science: how to characterize, con-
trol and use entanglement and correlations in atomic en-
sembles. The challenge here will be to prepare the en-
sembles in complex quantum states with high fidelity,
and to develop methods for their characterization - with
decoherence reduced as much as possible (or with its ef-
fects reduced by error-correction methods). One helpful
new interferometric technique will be the development of
powerful homodyne and heterodyne methods for detect-
ing atoms, in analogy to quantum optics. This will be
greatly aided by the development of detection methods
with high quantum efficiency, which are also highly de-
sirable in studying atom-atom correlations, particularly
of higher order.

Having a good understanding of the electromagnetic
atom-surface interaction, and ways to mitigate near-
surface decoherence, the physics community will have
a tool to search for fundamental short-range interac-
tions, as predicted in some unified theories. In prin-
ciple atom interferometry has the potential to improve
the present limits on non-Newtonian gravitational po-
tentials at the micrometer length scale by many orders
of magnitude (Dimopoulos and Geraci, 2003). The main
challenge here will be to control the systematic effects,
mainly coming from the electro magnetic interactions of
the atom with the close by surfaces, and the atom-atom
interactions as discussed below. Smaller and more com-
pact atom interferometers also have application to iner-
tial sensors for commercial applications.

Atom interference will be one of the central tools in
the study of many-atom systems generally and of atoms
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in lattices that model condensed matter Hamiltonians
in particular. First, diffraction peaks are the hallmark
of atoms in the regime where tunneling dominates in a
periodic lattice (Bloch et al., 2000). As more complex
lattices are studied, higer order interference will play a
role. In their turn, these lattices can have regions where
a particular number of atoms are confined in each lattice
site; this suggests a way to make a source of atomic num-
ber states allowing studies of degenerate atomic systems.
Especially interesting in this arena will be the study of
phase transitions in mesoscopic ensembles, which are too
large to permit full quantum calculations, but too small
for the thermodynamic description to be valid. This
will give us a new and detailed look at the thermody-
namic border. There are many new avenues to explore
with dense degenerate quantum gases. In the present
review we focused on single particle interference or in
the language of quantum optics: to first order coherence.
One very fruitful avenue will be extention to multi par-
ticle interferometry, which can give more rapidly varying
fringes and sub-shot noise statistical precision. Detecting
higher order coherences requires measurements of corre-
lations between N atoms. Noise correlation with bosons
and fermions (Altman et al., 2004; Gritsev et al., 2006;
Hofferberth et al., 2006, 2007b; Morsch and Oberthaler,
2006; Polkovnikov et al., 2006) are examples of recent de-
velopments in this field.

The field of atom and molecular interference is young
but has already impacted atomic and quantum physics
across a broad frontier. New techniques and the applica-
tion of previously developed techniques to new scientific
problems promises much future scientific gain.
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TABLE VI Selected books, special journal issues and review articles germane to atom interferometers

Books:

Atom Interferometry (Berman, 1997)

Atom Optics (Meystre, 2001)

Laser Cooling and Trapping (Metcalf and van der Stratten, 1999)

Neutron Interferometry (Rauch and Werner, 2000)

Electron Interferometry (Tonomura, 1999; Tonomura et al., 1999)

Molecular Beams (Ramsey, 1985)

Atomic and Molecular Beam Methods (Scoles, 1988)

Atomic, Molecular, and Optical Physics Handbook (Drake, 1996)

Atom and Molecular Beams, State of the Art (Campargue, 2000)

Encyclopedia of Modern Optics (Robert D. Guenther and Bayvel, 2004)

Special Journal Issues

JOSA-B: Mechanical effects of Light (1985)

JOSA-B: Mechanical effects of Light (1989)

JOSA-B: Atom Optics (1992)

Applied Physics B 54 (1992)

JOSA-B: Atom Optics (1994)

Journal de Physique: Optics and Interferometry with Atoms, 4, (11), (1994)

SPIE Conference on Atom Optics (SPIE, 1997)

Journal of Modern Optics: Quantum State Preparation and Measurement 44 (1997)

Comptes Rendus de L’Academie des sciences Dossier on BEC and atom lasers, t.2 serie IV, (2001)

General Relativity and Gravitation, 36 (10) (2004)

Insight Review Articles in Nature 416 (2002)

Applied Physics B: Quantum Mechanics for Space Application 84, (4), (2006)

Selected review articles:

Atom Optics (Pritchard, 1991)

Atom Interferometry (Schmiedmayer et al., 1993)

The Feynman Path-Integral Approach to Atomic Interferometry - a Tutorial (Storey and Cohen-Tannoudji, 1994)

Atom Optics (Adams et al., 1994)

Atom Interferometry (Carnal and Mlynek, 1996)

de Broglie Optics (Wilkens, 1996)

Precision atom interferometry (Peters et al., 1997)

Matter-wave index of refraction, inertial sensing, and quantum decoherence in an at. interf. (Hammond et al., 1997)

Interferometry with atoms and molecules: a tutorial (Pritchard et al., 1997)

Atomic interferometry (Baudon et al., 1999)

Prospects for atom interferometry (Godun et al., 2001)

Atom optics: Old ideas, current technology, and new results (Pritchard et al., 2001)

Miniaturizing atom optics: from wires to atom chips (Schmeidmayer and Folman, 2001)

Coherence with atoms (Kasevich, 2002)

Microscopic atom optics: from wires to an atom chip (Folman et al., 2002)

Atom Interferometry (Miffre et al., 2006a)

For nonlinear atom optics see:

Nonlinear and quantum atom optics (Rolston and Phillips, 2002)

Nonlinear atom optics (Anderson and Meystre, 2003)

Physics with coherent matter waves (Bongs and Sengstock, 2004)
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Bordé, C.J., 1997, Matter-wave interferometers: a synthetic
approach, in Atom Interferometry edited by P.R. Berrman,
Academic Press (San Diego) pages 257-292.

Borrmann, G., 1941, The absorbance diagram of quartz,
Physik. Zeit. 42, 157.

Boyer, T. H., 1987, Proposed Aharonov-Casher effect: An-
other example of an Aharonov-Bohm effect arising from a
classical lag, Phys. Rev. A 36(10), 5083.

Bradley, M. P., J. V. Porto, S. Rainville, J. K. Thompson,
and D. E. Pritchard, 1999, Penning trap measurements of
the masses of Cs-133, Rb-87,Rb-85, and Na-23 with uncer-
tainties <= 0.2 ppb, Phys. Rev. Lett. 83(22), 4510.

Brezger, B., M. Arndt, and A. Zeilinger, 2003, Concepts for
near-field interferometers with large molecules, J. Opt. B
5(2), S82.

Brezger, B., L. Hackermuller, S. Uttenthaler, J. Petschinka,
M. Arndt, and A. Zeilinger, 2002, Matter-wave interferom-
eter for large molecules, Phys. Rev. Lett. 88, 100404.

Bruhl, R., P. Fouquet, R. E. Grisenti, J. P. Toennies, G. C.
Hegerfeldt, T. Kohler, M. Stoll, and D. Walter, 2002, The
van der waals potential between metastable atoms and solid
surfaces: Novel diffraction experiments vs theory, Euro-
phys. Lett. 59(3), 357.

Bruhl, R., R. Guardiola, A. Kalinin, O. Kornilov, J. Navarro,
T. Savas, and J. P. Toennies, 2004, Diffraction of neutral
helium clusters: Evidence for “magic numbers”, Phys. Rev.
Lett. 92(18), 185301.

Bruhl, R., A. Kalinin, O. Kornilov, J. P. Toennies, G. C.
Hegerfeldt, and M. Stoll, 2005, Matter wave diffraction
from an inclined transmission grating: Searching for the
elusive He4 trimer Efimov state, Phys. Rev. Lett. 95,
063002.

Bryant, H. C., and A. J. Cox, 1966, Mie theory and the glory,
J. Opt. Soc. Am. 56(11), 1529.

Buchner, M., R. Delhuille, A. Miffre, C. Robilliard, J. Vigué,
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method to test atom neutrality with a Mach-Zehnder atom

interferometer, Lecture Notes in Physics (Springer).
Chapman, M., C. Ekstrom, T. Hammond, R. Rubenstein,

J. Schmiedmayer, S. Wehinger, and D. Pritchard, 1995a,
Optics and interferometry with Na2 molecules, Phys. Rev
Lett. 74, 4783.

Chapman, M., T. D. Hammond, A. Lenef, J. Schmiedmayer,
R. R. Rubenstein, E. Smith, and D. E. Pritchard, 1995b,
Photon scattering from atoms in an atom interferometer:
Coherence lost and regained, Phys. Rev. Lett 75, 3783.

Chapman, M. S., C. R. Ekstrom, T. D. Hammond,
J. Schmiedmayer, B. E. Tannian, S. Wehinger, and D. E.
Pritchard, 1995c, Near field imaging of atom diffraction
gratings: the atomic Talbot effect, Phys. Rev. A 51, R14.

Chebotayev, V., B. Dubetsky, A. Kasantsev, and V. Yakovlev,
1985, Interference of atoms in separated optical fields, J.
Opt. Soc. Am. B 2(11), 1791.

Cheville, R. A., R. W. McGowan, and D. Grischkowsky, 1998,
Time resolved measurements which isolate the mechanisms
responsible for terahertz glory scattering from dielectric
spheres, Phys. Rev. Lett. 80(2), 269.

Chiao, R. Y., and Y. S. Wu, 1986, Berry’s phase in optical
fibers, Phys. Rev. Lett. 57, 933.

Chikkatur, A. P., Y. Shin, A. E. Leanhardt, D. Kielpinski,
E. Tsikata, T. L. Gustavson, D. E. Pritchard, and W. Ket-
terle, 2002, A continuous source of Bose-Einstein condensed
atoms, Science 296(5576), 2193.

Chormaict, S. V., V. Wiedemann, Ch. Miniatura, J. Robert,
S. Le Boiteux, V. Lorent, O. Gorceix, S. Feron, J.
Reinhardt, and J. Baudon, 1993, Longitudinal Stern-
Gerlach atomic interferometry using velocity selected
atomic beams, J. Phys. B 26, 1271.

Christ, M., A. Scholz, M. Schiffer, R. Deutschmann, and
W. Ertmer, 1994, Diffraction and reflection of a slow
metastable neon beam by an evanescent light grating, Opt.
Comm. 107(3-4), 211.

Chu, S., J. E. Bjorkholm, A. Ashkin, and A. Ca-
ble, 1986a, Experimental-observation of optically trapped
atoms, Phys. Rev. Lett. 57(3), 314.

Chu, S., J. E. Bjorkholm, A. Ashkin, J. P. Gordon, and L. W.
Hollberg, 1986b, Proposal for optically cooling atoms to
temperatures of the order of 10−6 K, Opt. Lett. 11(2), 73.

Chu, S., L. Hollberg, J. E. Bjorkholm, A. Cable, and
A. Ashkin, 1985, 3-dimensional viscous confinement and
cooling of atoms by resonance radiation pressure, Phys.
Rev. Lett. 55(1), 48.

Chu, S. Y., 1987, Charge neutrality of atoms and magnetic
monopoles, Phys. Rev. Lett. 59(13), 1390.

Cimmino, A., G. I. Opat, A. G. Klein, H. Kaiser, S. A.
Werner, M. Arif, and R. Clothier, 1989, Observation of
the topological Aharonov-Casher phase shift by neutron
interferometry, Phys. Rev. Lett. 63, 380.

Clade, P., E. de Mirandes, M. Cadoret, S. Guellati-Khelifa,
C. Schwob, F. Nez, L. Julien, and F. Biraben, 2006, De-
termination of the fine structure constant based on Bloch
oscillations of ultracold atoms in a vertical optical lattice,
Phys. Rev. Lett. 96, 033001.

Clauser, J. F., 1988, Ultra high sensitivity accelerometers and
gyroscopes using neutral atom matter wave interferometry,
Physica B 151, 262.

Clauser, J. F., 1989, Rotation, acceleration, and gravity sen-
sors using quantum-mechanical matter-wave interferome-
try using neutral atoms and molecules, US Patent No.
4,874,942 .

Clauser, J. F., 1997, De Broglie-Wave Interference of Small



71

Rocks and Live Viruses (Kluwer Academic).
Clauser, J. F., and S. F. Li, 1994a, Heisenberg microscope de-

coherence atom interferometry, Phys. Rev. A 50(3), 2430.
Clauser, J. F., and S. F. Li, 1994b, Talbot-vonLau atom inter-

ferometry with cold slow potassium, Phys. Rev. A 49(4),
R2213.

Clauser, J. F., and S. F. Li, 1997, Generalized Talbot-Lau
atom interferometry, in Atom Interferometry edited by P.R.
Berrman, Academic Press (San Diego) pages 121-152.

Clauser, J. F., and M. Reinisch, 1992, New theoretical and
experimental results in Fresnel optics with applications to
matter-wave and x-ray interferometry, Appl. Phys. B 54,
380.

Cline, R., J. Miller, and D. Heinzen, 1994, Study of Rb-2
long-range states by high resolution photoassociation spec-
troscopy, Phys. Rev. Lett 73, 632.

Cognet, L., V. Savalli, G. Z. K. Horvath, D. Holleville,
R. Marani, N. Wiestbrook, C. I. Westbrook, and A. Aspect,
1998, Atomic interference in grazing incidence diffraction
from an evanescent wave mirror, Physical Review Letters
81(23), 5044.

Cohen, J. L., B. Dubetsky, P. R. Berman, and J. Schmied-
mayer, 2000, Filtered Talbot lens: Producing lambda/2n-
periodic atomic patterns with standing-wave fields having
period lambda, Phys. Rev. A 61(3), 033610.

Cohen-Tannoudji, C., 1998, Manipulating atoms with pho-
tons, Physica Scripta T76, 33.

Cohen-Tannoudji, C., and J. Dupont-Roc, 1972, Experimen-
tal study of Zeeman light shifts in weak magnetic-fields,
Phys. Rev. A 5(2), 968.

Colella, R., A. W. Overhauser, and S. A. Werner, 1975, Ob-
servation of gravitationaly induced quantum interference,
Phys. Rev. Lett. 34, 1472.

Y. Colombe, B.Mercier, H.Perrin, and V.Lorent, 2005,
Diffraction of a Bose-Einstein condensate in the time do-
main, Phys. Rev. A 72, 061601(R).

Y. Colombe, E.Knyazchyan, O.Morizot, B.Mercier, V.Lorent,
and H.Perrin, 2004, Ultracold atoms confined in rf-induced
two-dimensional trapping potentials, Europhys. Lett. 67,
593.

Commins, E. D., 1991, Berry geometric phase and motional
fields, Am. J. Phys. 59(12), 1077.

Cornell, E. A., and C. E. Wieman, 2002, Nobel lecture: Bose-
Einstein condensation in a dilute gas, the first 70 years and
some recent experiments, Rev. Mod. Phys. 74(3), 875.

Cronin, A., and J. Perreault, 2004, Phasor analysis of atom
diffraction from a rotated material grating, Phys. Rev. A
70(4), 043607.

Cronin, A., L. Wang, and J. Perreault, 2005, Limita-
tions of nanotechnology for atom interferometry, LANL ,
arXiv:physics/0508032.

Cronin, A. D., D. A. Kokorowski, T. D. Roberts, and D. E.
Pritchard, 2003, Controlled decoherence in an atom inter-
ferometer, Fortsch. Phys. 51(4-5), 313.

Dahan, M. B., E. Peik, J. Reichel, Y. Castin, and C. Salomon,
1996, Bloch oscillations of atoms in an optical potential,
Phys. Rev. Lett. 76(24), 4508.

Dalfovo, F., S. Giorgini, L. P. Pitaevskii, and S. Stringari,
1999, Theory of Bose-Einstein condensation in trapped
gases, Rev. Mod. Phys. 71(3), 463.

Dalibard, J., and C. Cohen-Tannoudji, 1985, Dressed-atom
approach to atomic motion in laser-light - the dipole force
revisited, J. Opt. Soc. Am. B 2(11), 1707.

David, C., B. Nohammer, H. H. Solak, and E. Ziegler, 2002,

Differential x-ray phase contrast imaging using a shearing
interferometer, App. Phys. Lett. 81(17), 3287.

Davisson, C., and L. H. Germer, 1927, Diffraction of electrons
by a crystal of nickel, Phys. Rev. 30(6), 705.

De Broglie, L., 1923, Radiations - ondes et quanta (radiation
- waves and quanta), Comp. Rend. Ac. Sci. 177, 507.

Degenhardt, C., H. Stoehr, C. Lisdat, G. Wilpers, H. Schnatz,
B. Lipphardt, T. Nazarova, P. E. Pottie, U. Sterr, J. Helm-
cke, and F. Riehle, 2005, Calcium optical frequency stan-
dard with ultracold atoms: Approaching 10−15 relative un-
certainty, Phys. Rev. A 72(6), 062111.

Degenhardt, C., H. Stoehr, U. Sterr, F. Riehle, and C. Lisdat,
2004, Wavelength-dependent ac stark shift of the S1(0)-
P3(1) transition at 657 nm in Ca, Phys. Rev. A 70(2),
023414.

Dehuille, R., C. Champenois, M. Buchner, , R. Mathevet,
C. Rizzo, C. Robillard, and J. Vigué, 2001, Atom in-
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applications dune nouvelle méthode de Spectroscopie In-
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2006a, Atom Interferometry, Phys. Script. 74(2), C15.
Miffre, A., M. Jacquey, M. Buchner, G. Trenec, and J. Vigué,
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