Macroscopic Quantum Systems I. Mazets, J. Schmiedmayer

Course Outline

9

Degenerate Quantum Gases: basic physics

- 1.1 Quantum statistics:
 1.2 Ideal Gas: BEC in 3d, degenerate Fermions
- 1.3 Ideal gas in a Trap

2 Experimental Techniques to achieve BEC

- 2.1 Laser cooling
- 2.2 Conservative atom traps 2.3 Evaporative cooling

3 The interacting Degenerate Quantum Gas

- 3.1 Scattering at low energies
- 3.2 Interacting gas, Gross-Piteavskii equation
- 3.3 Attractive interactions3.4 Repulsive interaction

Probiging BEC Properties

- 4.1 Imaging techniques 4.2 probing equilibrium properties
- 4.3 probing dynamic properties

5 Dynamics of a Quantum Gas

- 5.1 Time dependent GP equation
 - 5.2 Linear response, collective excitations
- 5.3 Microscopic description, Bogoliubov expansion 5.4 Solitons

6 Rotating Quantum Gas

- 6.1 Superfluidity and quantized rotation
- 6.2 Quantized vorties
- 6.3 Critical rotation

Tunable intreractions 7

- 7.1 Feshbach resonances Molecule formation 7.2
- 73 Efimov states

Degenerate Fermi Gas 8

- 8.1 Fermi statistics
- 8.2 Cooling a Fermi gas
- 8.3 Signatures of a degenerate Fermi gas BEC - BCS cross over 8.4

- Low dimensional Quantum Gases 9.1 The ideal Bose gas in low dimensions
 - 92 The trapped interacting Bose gas in 2D
 - 9.3 The trapped interacting Bose gas in 2D

10 Coherence on BEC

- 10.1 Interference: Coherent vs. independent BEC
- 10.2 BEC interferometry in double wells 10.3 Bragg interferometry
- 10.4 Superradiant Rayleigh scattering

11 Quantum Coherence and Quantum Tunneling

- 11.1 Atom lasers11.2 Tunelling in a double well11.3 The bosonic Josephson junction

12 Optical Lattices

- 12.1 Lattice basics 12.2 1D optical lattices
- 12.3 Bloch bands
- 12.4 Superfluid Mott transition
- 12.5 Quantum computation in lattices

Macroscopic Quantum Systems 2011

02.03.	09.03.	1418. 03	06.04. tentative	27.04.	01.06. tentative	08.06. tentative
14 ¹⁵ -16 ³⁰ Introduction to Bose- Einstein condensation Experimental techniques for achieving BEC	14 ¹⁵ -16 ³⁰ Interacting quantum gases Basic Theory	Guest lectures on BEC Nick Proukakis Univ. Newcastle	14 ¹⁵ -17 ⁴⁵ Dynamics of a Quantumgas Rotating Quantumgas Superfluidity and vortices	14 ¹⁵ -17 ⁴⁵ Tunable Interactions Feshbach resonance Molecule formation Degenerate Fermi gases BEC-BCS crossover	14 ¹⁵ -17 ⁴⁵ Low dimensional quantum gases Coherence properties of BEC	14 ¹⁵ -17 ⁴⁵ Quantum coherence, quantum tunnelling Optical Lattices

There will be an extended coffee break in mid afternoon

	Jörg Schmiedmayer	experime	nt)
	Igor Mazets	(theory)	
Degenerate	Quantum gases SS 2011	I. Mazets, J. Schmiedmayer	Lecture I

Seminars:

- one seminar session for each lecture block (2 in total)
- short 15+5 min. talks by small teams (up to 3 people)
- specific topics treated in more detail than in the lecture
- add experimental details
- practice for the exam (participation mandatory)
- Dates announced for each session

First seminar session: Wednesday **30th March 14^h** (tentative)

Exam:

- short term-paper (4 pages max.) on a recent scientific publication
- individual topics defined, given out at last lecture block
- 72 h home exam, all tools (apart other people) allowed
- 15 min. discussion when handing in the paper

Lecture I:

1 Degenerate Quantum Gases: basic physics

1.1 Quantum statistics:

Wave function of 2 indistinguishable particles (Bosons - Fermions) Statistics and indistinguishability: Counting particle Density of states, Bose- Fermi and Bolzman Statistics (reminder)

- 1.2 Ideal Gas: BEC in 3d, degenerate Fermions Critical temperature for Bosons Condensate fraction
- 1.3 Ideal gas in a Trap Density of states in a trap BEC in a Trap Fermions in a Trap Lower dimensions

1.4 Making a BEC

Laser Cooling Magnetic Trapping Evaporative Cooling observing a BEC

```
Degenerate Quantum gases 55 2011
```

I. Mazets, J. Schmiedmayer

er Lecture I

Folie: 5/56

What is BEC? What is its underlying Physics? What the fundamental concept?

Colloquial: 'all particles are in the same state'

- Broken Gauge Symmetry,
- Off-diagonal long range order (ODLRO)
- Long range phase coherence
- Macroscopic wave function of the condensate

These concepts were first introduced in studying superconductivity and superfluidity

What is the signature?

- Delta function of the occupation number of particles with zero momentum associated with long range phase coherence
- Bose narrowing (decrease in average energy as density gets higher). For fermions it is the opposite.
- Process of stimulated scattering: The scattering rate contains a factor $(1+N_f)$ where N_f is the occupation number of the final state

BEC basic introduction

BEC is a common phenomenon occurring in physics on all scales

- Condensed matter
- atomic physics
- nuclear and elementary particle physics
- astrophysics

Bosonic degrees of freedom are composite, they originate from Fermionic degrees of freedom (in most cases).

- Fundamental Bosons: gauge Bosons : Photon, W,Z
- Fundamental Fermions: p,n,e

old table from 1993: Bosons under study

Particle	Composed of	In	Coherence seen in
Cooper pair	e-, e-	metals	superconductivity
Cooper pair	h+, h+	copper oxides	high-T _c superconductivity
exciton	e ⁻ , h ⁺	semiconductors	luminescence and drag-free transport in Cu ₂ O
biexciton	2(e ⁻ , h ⁺)	semiconductors	luminescence and optical phase coherence in CuCl
positronium	e ⁻ , e ⁺	crystal vacancies	(proposed)
hydrogen	e-, p+	magnetic traps	(in progress)
⁴ He	⁴ He ²⁺ , 2e ⁻	He-II	superfluidity
³ He pairs	2(³ He ²⁺ , 2e ⁻)	³ He-A,B phases	superfluidity
cesium	¹³³ Cs ⁵⁵⁺ , 55e ⁻	laser traps	(in progress)
interacting bosons	nn or pp	nuclei	excitations
nucleonic pairing	nn or pp	nuclei neutron stars	moments of inertia superfluidity and pulsar glitches
chiral condensates	$\langle ar{q}q angle$	vacuum	elementary particle structure
meson condensates	pion condensate = $\langle \bar{u}d \rangle$, etc. kaon condensate = $\langle \bar{u}s \rangle$	neutron star matter	neutron stars, supernovae (proposed)
Higgs boson	$\langle \bar{t}t \rangle$ condensate (proposed)	vacuum	elementary particle masses

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedm

FIG. 1. Generic phase diagram common to all atoms: dotted line, the boundary between non-BEC and BEC; solid line, the boundary between allowed and forbidden regions of the temperature-density space. Note that at low and intermediate densities, BEC exists only in the thermodynamically forbidden regime.

Why interesting?

Strongly interacting vs. weakly interacting Bose gas

- Liquid Helium is dominated by interactions. The BEC fraction is in the order of 10%. Many phenomena are masked by the strong interactions
- A weakly interacting gas (Atoms, Excitons): theoretic description is easier
- using *Feshbach resonances* the interactions can be tuned by the experimenter: weakly interacting -> strongly correlated

Condensation in free space vs. trapped condensates

- Free space one gets the classic formulas for BEC and its thermodynamic properties.
- Trapped gases: one has to look at the density of states in the trap.
 - o isotropy of trap potential
 - o dimensionality: 3d, (quasi) 2d, 1d
 - o disordered potentials
- lattices: probe (simulate) solid state problems
- small number of particles vs. continuum in thermodynamics o what is the minimal size of a system we still can call a Bose condensate?

Fermions

- Pauli principle, FD statistics
- At low temperatures: BEC vs. BCS
 - o BEC: particle correlation length is very short compared to particle spacing. Molecules
 - o BCS: particle correlation length is larger than the inter particle spacing, Cooper pairs

Counting

Fermions

fermions	bosons	classical
0%	11%	10%
33%	11%	20%
33%	44%	30%
33%	33%	40%

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

0

1

1

1

Lecture I

3 particles,

Fermions are loners!

100 % probability for single occupancy

total energy = 3

Quantenstatistik 3 verschieden Statistiken (Verteilungen)

	Bose	Boltzmann	Fermi
Teilchen	ununterscheidbar	unterscheidbar	ununterscheidbar
Spin	ganzzahlig $(0, 1, 2, \ldots)$	-	halbzahlig $(\frac{1}{2}, \frac{3}{2}, \ldots)$
Eigenfunktionen	symmetrisch	-	antisymmetrisch
qualitatives Verhalten	besetzen bevorzugt gleiche Zustände	-	Pauli-Prinzip: besetzen nie gleiche Zustände
P(E)	$\frac{1}{e^{(\alpha + E/kT)} - 1}$	$\frac{1}{e^{(\alpha + E/kT)}}$	$\frac{1}{e^{(\alpha + E/kT)} + 1}$
übliche Schreibweise	$\frac{1}{e^{(\alpha + E/kT)} - 1}$	$Ae^{-rac{E}{kT}}$	$\frac{1}{e^{(E-E_F)/kT}+1}$
Beispiele	Photonengas (Plancksches Gesetz) Phononengas flüssiges Helium Bose-Einstein- Kondensat	klassische Gase bei jeder Tem- peratur	Entartetes Elektronengas in Festkörper-, Atom-, Kern- und Astrophysik

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Lecture I

Folie: 13/56

Quantum Statistics: Two indistinguishable Particles

Wave function for 1 Particle	$\psi(x_1)$
Wave function for 2 Particles	$\psi(x_1,x_2)$
We can only observe	$ \psi(x_1,x_2) ^2$

If the particles are indistinguishable we find: $|\psi(x_1, x_2)|^2 = |\psi(x_2, x_1)|^2$

There are 2 possibilities:

Boson :

$$\psi_{+}(x_{1}, x_{2}): \quad \psi_{+}(x_{1}, x_{2}) = +\psi_{+}(x_{2}, x_{1})$$
$$\psi_{+}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} [\psi_{1}(x_{1})\psi_{2}(x_{2}) + \psi_{2}(x_{1})\psi_{1}(x_{2})]$$

Fermion
$$\psi_{-}(x_{1}, x_{2}): \quad \psi_{-}(x_{1}, x_{2}) = -\psi_{-}(x_{2}, x_{1})$$

 $\psi_{-}(x_{1}, x_{2}) = \frac{1}{\sqrt{2}} [\psi_{1}(x_{1})\psi_{2}(x_{2}) - \psi_{2}(x_{1})\psi_{1}(x_{2})]$

Two indistinguishable Particles II

sets see what happens if the two particles are at the same location (state) that is if $x_1 = x_2$

 $\psi_+(x_1, x_1) \neq 0 \rightarrow$ Bosons can occupy the same state $\psi_-(x_1, x_1) = 0 \rightarrow$ Fermions can not occupy the same state

consequently for 2 Bosons at the same location (in the same state) we find: $|\psi(x,x)|^2 = 2 |\psi_1(x)\psi_2(x)|^2$

probabilities to find n particles in the same state:

n classical particles $P_n = (P_1)^n$ n Bosons $P_n^{Boson} = n!(P_1)^n$

probability to add another Boson to a state with n Bosons

$$P_{n+1}^{Boson} = (n+1)P_1P_n^{Boson}$$

Lecture T

stimulated scattering, stimulated emission

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Folie: 15/56

N - Particles

The above discussion generalizes readily to the case of N particles. Suppose we have N particles with quantum numbers $n_1, n_2, ..., n_N$. If the particles are bosons, they occupy a **totally symmetric state**, which is symmetric under the exchange of *any two* particle labels:

$$|n_1 n_2 \cdots n_N; S\rangle = \sqrt{\frac{\prod_j N_j!}{N!}} \sum_p |n_{p(1)}\rangle |n_{p(2)}\rangle \cdots |n_{p(N)}\rangle$$

Here, the sum is taken over all possible permutations p acting on N elements. The square root on the right hand side is a normalizing constant. The quantity N_j stands for the number of times each of the single-particle states appears in the N-particle state.

In the same vein, fermions occupy totally antisymmetric states

$$|n_1 n_2 \cdots n_N; A\rangle = \frac{1}{\sqrt{N!}} \sum_p \operatorname{sgn}(p) |n_{p(1)}\rangle |n_{p(2)}\rangle \cdots |n_{p(N)}\rangle$$

Here, sgn(p) is the signature of each permutation (i.e. +1 if p is composed of an even number of transpositions, and -1 if odd.) Note that we have omitted the $\Pi_j N_j$ term, because each single-particle state can appear only once in a fermionic state.

These states have been normalized so that

$$\langle n_1 n_2 \cdots n_N; S | n_1 n_2 \cdots n_N; S \rangle = 1, \qquad \langle n_1 n_2 \cdots n_N; A | n_1 n_2 \cdots n_N; A \rangle = 1.$$

1. Beispiel: 2 freie Elektronen

$$\begin{split} \psi_a(1) &= e^{ik_a x_1} & |\psi_a|^2 = const. \\ \psi_b(2) &= e^{ik_b x_2} & |\psi_b|^2 = const. \\ \Rightarrow & |\psi_-(1,2)|^2 = 1 - cos[(k_a - k_b)(x_1 - x_2)] \quad (\text{symmetrisch in } \Delta x \text{ und } \Delta k) \\ \text{a)} \quad x_1 = x_2 \qquad \Rightarrow & |\psi_-|^2 = 0 \text{ überall} \\ 2 \text{ Elektronen können nie am gleichen Ort sein (gleiche Stelle im Ortsraum)} \\ \text{b)} \quad k_a = k_b \qquad \Rightarrow & |\psi_-|^2 = 0 \text{ überall} \\ 2 \text{ Elektronen können nie den gleichen Impuls haben (gleiche Stelle im Impulsraum)} \end{split}$$

Beachte: "Gleich" in Ort oder Impuls kann nur im Rahmen der Unschärferelation definiert werden, d.h. mit der Genauigkeit \hbar . Konsequenzen für die Quantenstatistik: "Zellgrößen" im Phasenraum sind von der Größenordnung des Planckschen Wirkungsquantums h (s. 3.2).

Im 1s-Zustand von Atomen können gerade 2 Elektronen (mit entgegengesetzten Spinrichtungen) untergebracht werden, im 2s-Zustand ebenfalls 2, im 2p-

2. Beispiel: Aufbau des Periodensystems

 \Rightarrow Schalenstruktur der Atomhülle (s. Kap. 4)

Zustand 6 etc. (Vorschlag Pauli 1925)

 P_1 sei Wahrscheinlichkeit, dass ein ursprünglich leerer Zustand von einem Boson besetzt wird. Bei n Bosonen gilt dann nicht wie bei klassischen (unterscheidbaren) Teilchen

$$P_n = (P_1)^n$$

sondern

$$\Rightarrow \quad P_n^{\text{Boson}} = n! P_1^n$$

Es ergibt sich also eine Vergrößerung der Besetzungswahrscheinlichkeit um den Faktor n!.

Differentielle Betrachtung:

$$P_{n+1}^{\text{Boson}} = (n+1)P_1P_n^{\text{Boson}}$$

Wenn schon n Bosonen in einem Zustand vorliegen, ist die Wahrscheinlichkeit, dass ein weiteres dazukommt, um (n+1) größer als im Fall klassischer (unterscheidbarer) Teilchen.

Im Fall makroskopischer Systeme mit nvon der Größenordnung $\geq 10^{20}$ führt dies zu enormen Konsequenzen (s.u.).

Merkregeln

- "Fermionen besetzen nie gleiche Zustände"
- "Bosonen bevorzugen gleiche Zustände"

Fermionen

Verteilung von Teilchen Klassische und Quantensatistik

In der statistischen Mechanik gilt allgemein für die Zahl der Teilchen/Energie
intervalldN/dE bei der EnergieE

$$\frac{dN(E)}{dE} = g(E) \cdot P(E)$$

Dabei bedeuten

- g(E) dE die Zahl der Zustände im Energie
intervall dE bei der Energie E
- P(E) die Besetzungswahrscheinlichkeit (bzw. mittlere Zahl der Teilchen) von Zuständen der Energie E im thermischen Gleichgewicht

dN/dE kann verteilt sein

- a) diskontinuierlich (gequantelte Zustände bei gebundenen Teilchen)
- b) kontinuierlich (bei freien Teilchen)

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Lecture I

Folie: 19/56

Zustandsdichte

g(E) muss im 6-dimensionalen Phasenraum (3 Orts-, 3 Impulskoordinaten) ermittelt werden. Annahmen: Ortsraum integral: V

Ortsraum integral:

Impulsraum differentiell (Kugelschale): $4\pi p^2 dp$

Größe einer Einzelzelle im Phasenraum: h^3

Damit Zahl der Zustände im Impulsintervall dp beim Impuls p

$$g(p)dp = V \frac{4\pi p^2 dp}{h^3}$$

1) Nicht-relativistische Teilchen einschließlich Spin

$$p = \sqrt{2mE}$$
 \Rightarrow $g(E)dE = g_s V \frac{4\pi}{h^3} (2m^3)^{1/2} \sqrt{E} dE$

2) Voll-relativistische Teilchen (z.B. Photonen) einschließlich Spin

$$p = E/c$$
 \Rightarrow $g(E)dE = g_s V \frac{4\pi}{h^3} \frac{E^2}{c^3} dE$

Die Faktoren g_s bedeuten statistische Gewichte, die von der Größe des Spins abhängen

Lecture I

Derivation of the density of states for three dimensions

- Boundary condition: box
- Quantization of momentum
- Each point represents sphere with \hbar^3 as volume

Abb. 12.10. (a) Stehende Wellen in einem Kasten. (b) Randbedingungen für die Wellenvektorkomponenten. (c) Zur Abzählung der Gitterpunkte im K-Raum

nerate Quantum gases 55 2011	I. Mazets, J. Schmiedmayer	Lecture I	Folie: 21/56

Quanten Statistik Comparison of the Distributions

$$P(E) = \begin{cases} \frac{1}{e^{(E-\mu)/k_BT}} = Ae^{-\frac{E}{k_BT}} & \text{classical particles} \\ & \text{Maxwell-Boltzmann} \\ \text{statistics} \\ \hline e^{(E-\mu)/k_BT} - 1 & \mu < 0 & \text{Bosons} \\ \hline e^{(E-\mu)/k_BT} - 1 & \mu = E_F & \text{Fermions} \\ \hline e^{(E-\mu)/k_BT} + 1 & \mu = E_F & \text{Fermions} \\ \hline \text{statistics} \\ \text{statistics} \end{cases}$$

$$\sigma = e^{\frac{\mu}{kT}}, \quad x := \frac{\epsilon - \mu}{kT},$$

$$N_{iBE} = \frac{1}{\sigma^{-1} e^{\epsilon_i/kT} - 1} \longrightarrow N_{BE}(x) = \frac{1}{e^x - 1}$$

$$N_{iMB} = \frac{1}{\sigma^{-1} e^{\epsilon_i/kT}} \longrightarrow N_{MB}(x) = \frac{1}{e^x}$$

$$N_{iFD} = \frac{1}{\sigma^{-1} e^{\epsilon_i/kT} + 1} \longrightarrow N_{FD}(x) = \frac{1}{e^x + 1}$$

Deger

Homogeneous Bose Gas Bose-Einstein Condensation

Bose Einstein Distribution:

Note $x = \beta E = E/(kT)$ (that means dx = dE/(kT)) and the de Broglie wavelength is $\lambda_{dB} = \sqrt{\frac{2\pi\hbar^2}{mkT}}$.

$$P(E) = \frac{1}{e^{\beta(E-\mu)} - 1} = \frac{1}{z^{-1}e^{\beta E} - 1}$$
(1)

where μ is the chemical potential and $z = e^{\beta\mu}$ is the fugacity. μ must be negative so that the distribution is limited.

Consider a fixed number of bosons N

$$N = \int \rho(E) P(E) dE \tag{2}$$

and remember(using $\alpha = 1/z$):

I. Mazets, J. Schmiedmaver

$$\rho(E)P(E)dE = V \frac{4\pi}{h^3} \sqrt{2m^3} \sqrt{E} \frac{1}{z^{-1} e^{E/(kT)} - 1}$$
(3)

Degenerate Quantum gases 55 2011

Bose-Einstein Condensation II

Lecture I

$$N = \int_0^\infty \rho(E) P(E) dE \tag{4}$$

$$= \frac{V}{\lambda_{dB}^3} \frac{2}{\sqrt{\pi}} \int_0^\infty dx \sqrt{x} \frac{z \cdot e^{-x}}{1 - z \cdot e^{-x}}$$
(5)

$$N = \frac{V}{\lambda_{dB}^3} g_{3/2}(z) \tag{6}$$

where $g_{3/2} = \sum_{l=1}^{\infty} = \frac{z^l}{l^{3/2}}$ is the Bose function and z < 1. (Important values are $g_{3/2}(0) = 0$ and $g_{3/2}(1) = 2.612$.)

The problem is that z cannot be greater than one (μ must be negative) leads to a condition for the medium number of particles (integral cannot be greater than 2.612):

$$N \le 2.612 \frac{V}{\lambda_{dB}^3} \tag{7}$$

$$n\lambda_{dB}^3 \le 2.612\tag{8}$$

Folie: 23/56

Bose-Einstein Condensation III

In the continuous spectrum we accounted for the ground state with a density of $\rho(0) = 0$. The population $\overline{N_0}$ in the ground state has been neglected in the calculation so far. The only solution is that if $N > N_C$ all other particles go into the ground state. It becomes for temperatures below T_C macroscopic and has to be included by:

$$N = \overline{N_0} + \frac{V}{\lambda_{dB}^3} g_{3/2}(z) \tag{9}$$

 \rightarrow phase transition. We can find that the critical temperature at which the phase transition occurs is as:

$$kT_C = \frac{2\pi\hbar^2}{m} \left(\frac{n}{2.612}\right)^{2/3}$$
(11)

and the population in the ground state as

$$N_0(T) = N(1 - \left(\frac{T}{T_C}\right)^{3/2})$$
(12)

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Bose-Einstein Condensation IV

Lecture T

Fig. 2.1. The Bose distribution function f^0 as a function of energy for different values of the fugacity ζ . The value $\zeta = 1$ corresponds to temperatures below the transition temperature, while $\zeta = 0.5$ and $\zeta = 0.25$ correspond to $\mu = -0.69kT$ and $\mu = -1.39kT$, respectively.

Abb. 8.1: Die Abhängigkeit von N_0 , der Anzahl der Bosonen im Grundzustand eines idealen Bose-Einstein-Gases, als Funktion der Temperatur.

Folie: 25/56

Fermi-Distribution

Annahme: E_F fest (s.u.); numerisches Beispiel für $E_F = 2$ eV, $T_F = E_F/k = 23\,000$ K

Diskussion der Kurven:

- a T = 0: alle Phasenraumzellen der Zustände E_i bis zur Grenze E_F mit je 1 Fermion besetzt, also *voll*; P(E) = 1. Für $E_i > E_F$ alle Zellen leer, d.h. P(E) = 0.
- b, cT>0,~aber $kT\ll E_F:$ Abrundung, Verschmierung der Fermikante
- d $T \gg 0, kT \approx E_F$: selbst für die niedrigsten Zustände E_i gibt es unbesetzte Zellen \Rightarrow irgendwann Grenzfall Boltzmann
- Allgemeine Regel: Im Bereich $E \gg E_F$ Boltzmann-"Schwanz": dort $e^{-E/kT}$ immer ausreichend!

BEC in external Potential V. Bagnato et al. Phys. Rev. 35, p4354 (1987)

free space = $\frac{h^2}{2\pi kM} \left[\frac{1}{2.612} \frac{N}{V} \right]$

potential

d

ensity of states

$$\rho(\varepsilon) = \frac{2\pi (2M)^{3/2}}{h^3} \int_{V^{\bullet}(\varepsilon)} \sqrt{\varepsilon - U(\mathbf{r})} d^3 r$$

$$N = N_0 + \int_0^\infty n_\varepsilon \rho(\varepsilon) d\varepsilon$$

total energy and heat capacity $E(T) = \int_0^\infty \varepsilon n_{\varepsilon} \rho(\varepsilon) d\varepsilon$

The heat capacity $C(T) = \partial E(T) / \partial T$

$$\begin{split} C(T) &= \frac{1}{kT} \int_0^\infty \frac{\varepsilon \rho(\varepsilon)}{g_\varepsilon} (n_\varepsilon)^2 \left[\mu'(T) + \frac{\varepsilon - \mu}{T} \right] \\ & \times \exp\left[\frac{\varepsilon - \mu}{kT} \right] d\varepsilon \;, \end{split}$$

where $\mu'(T) = \partial \mu / \partial T$. C(T) is analogous to C_p in that it includes work done against the potential as the energy of the gas is increased. However, for obvious reasons the volume and pressure are not useful thermodynamic variables.

formulas for power law potentials

wer-law potential

$$U(\mathbf{r}) = \varepsilon_1 \left| \frac{x}{a} \right|^p + \varepsilon_2 \left| \frac{y}{b} \right|^l + \varepsilon_3 \left| \frac{z}{c} \right|^q$$

density of states

po

$$\rho(\varepsilon) = \left[\frac{2\pi (2M)^{3/2}}{h^3}\right] \frac{abc}{\varepsilon_1^{1/p} \varepsilon_2^{1/2} \varepsilon_3^{1/q}} \varepsilon^{\eta} F(p,l,q) ,$$

where
$$\eta = 1/p + 1/l + 1/q + \frac{1}{2}$$
 and $F(p, l, q)$ is defined by

$$F(p,l,q) = \left[\int_{-1}^{1} (1-X^p)^{1/2+1/q+1/l} dX\right] \left[\int_{-1}^{1} (1-X^l)^{1/q+1/2} dX\right] \left[\int_{-1}^{1} (1-X^q)^{1/2} dX\right]$$

The critical temperature is

$$T_{c} = \left[\frac{h^{3}}{2\pi(2M)^{3/2}} \frac{N}{abc} \frac{\varepsilon_{1}^{1/p} \varepsilon_{2}^{1/l} \varepsilon_{3}^{1/q}}{k^{\eta+1} F(p, l, q) Q(\eta)}\right]^{1/(\eta+1)}$$

where $Q(\eta) = \int_{0}^{\infty} \{\theta^{\eta} / [\exp(\theta) - 1]\} d\theta$.

The ground-state population fraction for $T < T_c$ is $\frac{N_0}{2} = 1 - (T/T)^{\eta+1}$

$$\frac{v_0}{N} = 1 - (T/T_c)^{\eta+1}$$

BEC in external Potential II

V. Bagnato et al. Phys. Rev. 35, p4354 (1987)

TABLE I. Critical temperature, ground-state population, heat capacity, and discontinuity in C(T) for several cases of threedimensional 3(D) confinement. (*V* represents volume and *S*, area). In the first two cases where the potential is one dimensional, rigid walls are assumed in the other direction. For the harmonic oscillator, the result agrees with previous calculation (Ref. 7).

Potential	T _c	$N_0/N~(T < T_c)$	$C(T_c^-)/Nk$	$\Delta C(T_c)/Nk$
$U(z) = \begin{cases} \varepsilon_3(z/a), & z > 0\\ \infty, & z < 0 \end{cases}$	$\left[\frac{h^3N}{1.4Sk^{5/2}(2\pi M)^{3/2}}\right]^{2/5} \left[\frac{\varepsilon_3}{a}\right]^{2/5}$	$1 - \left(\frac{T}{T_c}\right)^{5/2}$	6.88	3.35
$U(z) = \varepsilon_3 (z/a)^2$	$\left(\frac{3h^3N}{\sqrt{2}Sk^2\pi^4M^{3/2}}\right)^{1/2} \left(\frac{\varepsilon_3}{a^2}\right)^{1/4}$	$1 - \left[\frac{T}{T_c}\right]^2$	4.38	0
3D box	$\left[\frac{h^3N}{2.612k^{3/2}(2M\pi)^{3/2}V}\right]^{2/3}$	$1 - \left[\frac{T}{T_c}\right]^{3/2}$	1.92	0
$U(r) = \varepsilon_{\rm I} (r/a)^2$	$\left[\frac{Nh^3}{1.202\pi^3 k^3 (2M)^{3/2}}\right]^{1/3} \left[\frac{\varepsilon_1}{a^2}\right]^{1/2}$	$1 - \left[\frac{T}{T_c}\right]^3$	10.82	6.57
$U(z,\rho) = \varepsilon_1(z/a)^2 + \varepsilon_2(\rho/b)^2$	$\left[\frac{Nh^3}{1.202\pi^3k^{3}(2M)^{3/2}}\right]^{1/3} \left[\frac{\varepsilon_1}{a^2}\right]^{1/6} \left[\frac{\varepsilon_2}{b^2}\right]^{1/3}$	$1 - \left[\frac{T}{T_c}\right]^3$	10.82	6.57

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Lecture I

Folie: 31/56

General Scaling

Density of states in a general setting: $\rho(E) = C_{\alpha} E^{\alpha-1}$ using $x = E/kT_c$

$$N_{ex} = C_{\alpha} (kT_c)^{\alpha} \int_{0}^{\infty} dx \frac{x^{\alpha - 1}}{e^x - 1}$$
$$= C_{\alpha} \Gamma(\alpha) \zeta(\alpha) (kT_c)^{\alpha}$$

and for the critical temperature

$$kT_c = \frac{N^{1/\alpha}}{\left[C_{\alpha} \Gamma(\alpha) \zeta(\alpha)\right]^{1/\alpha}}$$

and

$$N_{ex} = N \left(\frac{T}{T_c}\right)^{\alpha}$$
$$N_0 = N \left[1 - \left(\frac{T}{T_c}\right)^{\alpha}\right]$$

Rieman's zeta-function $\zeta(\alpha) = \sum_{n=1}^{\infty} n^{-\alpha}$

α	$\Gamma(\alpha)$	$\zeta(\alpha)$	system
1	1	infinite	2-dim
3/2	$\pi^{1/2}/2=0.886$	2.612	box
2	1	$\pi^{2}/6=1.645$	2d harm. osz.
5/2	$3\pi^{1/2}/4=1.329$	1.341	
3	2	1.202	3d harm. osz.
7/2	$15\pi^{1/2}/8=3.323$	1.127	
4	6	$\pi^{4/90}=1.082$	

Low Dimensions

$$V_{\text{ext}}(\mathbf{r}) = \frac{m}{2}(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2) = \frac{1}{2}m\omega_{\perp}^2 r_{\perp}^2 + \frac{1}{2}m\omega_z^2 z^2 = \frac{1}{2}m\omega_{\perp}^2 (r_{\perp}^2 + \lambda^2 z^2)$$

Because of the infrared divergence of the integral		3D	$\frac{2D}{k_B T \ll \hbar \omega_z} k_B T > \hbar \omega_\perp$	$\frac{1}{k_B T \ll \hbar \omega_\perp k_B T > \hbar \omega_z}$
$N = \int_0^\infty \rho(\varepsilon) \frac{1}{\exp(\varepsilon - \mu) / k_B T - 1} \mathrm{d}\varepsilon$	DOS free space	$\epsilon^{1/2}$	constant	$\epsilon^{-1/2}$
there is no BEC for 2D or 1D in free space	T _c	$kT_C = \frac{2\pi\hbar^2}{m} \left(\frac{n}{2.612}\right)^{3/2}$	$k_B T_c \cong \frac{\hbar^2}{mL^2} \frac{N}{\ln(N)}$	-
the situation changes dramatically dir trapped	N/N ₀	$N_0 = N \left(1 - \frac{T}{T_0}\right)^{3/2}$		
 DOS is different use a finite sum 	DOS harmonic trap	ϵ^2	ω	const
$N = \sum_{n_x n_y n_z} \frac{1}{\exp[(\epsilon_{n_x n_y n_z} - \mu)/T] - 1}$	T _c	$T_{c}^{\rm 3D} = \frac{\hbar}{[\zeta(3)]^{1/3}} \omega_{ho} N^{1/3}$	$T_c^{\rm 2D} = \frac{\hbar\sqrt{6}}{\pi} \omega_{ho} N^{1/2}$	$k_B T_c \cong \hbar \omega_z \frac{N}{\ln(N)}$
• with a finite ground state energy	N/N ₀	$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c^{3D}}\right)^3$	$\frac{N_0}{N} \approx 1 - \left(\frac{T}{T_c^{\rm 2D}}\right)^2$	$\frac{N}{N_0} \sim 1 - \frac{T}{T_c}$

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Lecture I

Folie: 33/56

Fermions in a Trap

Fermi-Dirac Distribution

$$f(\epsilon) = \frac{1}{\exp\left[(\epsilon - \mu)/k_{\rm B}T\right] + 1}$$
$$N = \int g(\epsilon)f(\epsilon)d\epsilon.$$

with

and the density of states of a harmonic oscillators

 $g(\epsilon) = \epsilon^2 / 2(\hbar \omega_{\rm ho})^3$

one obtains the Fermi energy $E_{\rm F} = \hbar \omega_{\rm ho} (6N)^{1/3}$ and Fermi temperature $T_{\rm F} = E_{\rm F}/k_{\rm B}$

At T=0 and equilibrium we require

$$\frac{\hbar^2 k_F^2(\mathbf{r})}{2m} + V(\mathbf{r}) = E_{\rm F}$$

and using the relation between Fermi momentum and density $\frac{4}{2}\pi k_{\rm F}^3(\mathbf{r}) = (2\pi)^3 n(\mathbf{r})$

we find the density profile

$$n(\mathbf{r}) = \frac{1}{6\pi^2} \left[\frac{2m}{\hbar^2} \left(E_{\rm F} - V(\mathbf{r}) \right) \right]^{3/2}$$

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

 $E_{\rm F} = \frac{1}{2}m\omega_x^2 R_x^2 = \frac{1}{2}m\omega_y^2 R_y^2 = \frac{1}{2}m\omega_z^2 R_z^2$ with $\omega_{\rm ho} = (\omega_x \omega_y \omega_z)^{1/3}$ we find $R_i = a_{\rm ho} (48N)^{1/6} \frac{\omega_{\rm ho}}{\omega_i}$.

for cigar shaped traps:

trapping frequencies ω_{\perp} and ω_{\parallel}

$$n(\mathbf{r}) = \frac{8}{\pi^2} \frac{N}{R^2 Z} \left(1 - \frac{r^2}{R^2} - \frac{z^2}{Z^2} \right)^{3/2}$$

$$k_{\rm F} = \sqrt{2mE_{\rm F}/\hbar^2} = (48N)^{1/6}/a_{\rm ho}$$

width of the momentum distribution

$$n(\mathbf{k}) = \frac{8}{\pi^2} \frac{N}{k_F^3} \left(1 - \frac{k^2}{k_F^2} \right)^{3/2}$$

Lecture I

Folie: 35/56

Making a BEC

BEC what we need

• extremely cold atoms

- •Ways to cool and accumulate large number of atoms
- ·Laser cooling
- ·Laser trapping (MOT)
- Evaporative cooling

conservative trap to hold the atoms

- •Ways to hold large number of ultra cold atoms without heating
- Magnetic trap
- · Optical trap

good collision properties

- ·High collision rate to achieve thermalization (good collisions)
- ·Low inelastic rates (bad collisions)

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmaver Lecture T Folie: 37/56

Cold Atoms for BEC

basics

Laser Cooling

Neutral atoms can be cooled by interacting with monochromatic light (~thermal equilibrium with the light)

- Temperature

 $1mK \Rightarrow 1uK$ •Velocity
•deBroglie wavelength
•Typical samples
0.5m/s ⇒1mm/s
10nm ⇒500nm
10⁸ atoms @ 10¹¹ atoms/cm³

Magnetic Trapping

Neutral atoms can be magnetically trapped $U=-\mu B$ 1Gauss ~ 67 μ K for a magnetic moment $\mu = \mu_B$

Evaporative cooling to BEC

Cooling in a magnetic trap by removing the hottest atoms and thermal equilibration (evaporative cooling)

- >10⁵ atoms @ 10¹⁴ atoms/cm³ •Typical samples •Temperature <1uK
- •deBroglie wavelength >1µm

Cold Atoms basic relations

	E [eV]	v [cm s-1]	λ [Å]	h [cm]
E [eV]		5.182 10 ⁻¹³ A v ²	$\frac{0.0825}{A \lambda^2}$	1.017 10 ⁻⁹ A h
v [cm s-1]	$1.389 \ 10^6 \sqrt{\frac{E}{A}}$		$\frac{3.990\ 10^5}{A\ \lambda}$	44.29 √h
λ [Å]	$\frac{0.2873}{\sqrt{E} A}$	$\frac{3.990\ 10^5}{A\ v}$		$\frac{9008.6}{A \sqrt{h}}$
h [cm]	9.836 $10^8 \frac{E}{A}$	5.097 10 ⁻⁴ v ²	$\frac{8.115\ 10^7}{A^2\ \lambda^2}$	

 $t = 0.04515 \sqrt{h}$

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Lecture I

Folie: 39/56

Laser cooling requires low density to avoid light absorption

Recomended Literature

Laser Cooling

- The Quantum Theory of Light; R. Laudon: Oxford Science Publications
- Laser Cooling and Trapping H. Metcalf, P. van der Straaten (Springer)
- Nobel prize lectures 1997:
 - The manipulation of neutral particles S. Chu; Rev. Mod. Phys. 71 685 (1998)
 - Manipulating atoms with photons C. Cohen-Tannoudji: Rev. Mod. Phys. 71 707 (1998)
 - Laser cooling and trapping of neutral atoms W. Phillips: Rev. Mod. Phys. 71 721 (1998)

Degenerate Quantum gases 55 2011

Atoms are pushed to the point with B=(

Typical parameters: Density: >10¹¹ atoms/cm³ Up to >10¹⁰ atoms

How to collect cold atoms

Problem:

capture range of light forces is small (10m/s) compared with the velocity of thermal atoms (500m/s)

Slow atoms from thermal velocity

• Zeeman slower (tune the atom transitions with external magnetic fields)

Collect the slow atoms out of the low energy tail of the Maxwell distribution

 Vapour cell MOT the 4π solid angle captured by the MOT compensates for the small number of slow atoms. Flux ~ v³ for mv²<< kT Maxwell Distr: f(v) ~ v² exp(-mv²/kT)

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

yer Lecture I

Folie: 45/56

Magnetic Trapping

Atoms in Magnetic Field Breit Rabi Formula for F=I+1/2

Fig. 102 Feldabhängigkeit der HFS-Aufspaltung nach der Breit-Rabi-Formel für I = 1/2 und I = 1

FIGURE 4.2. Energies of the ground hyperfine states of Na, where the states and M_F is the projection of the total angular momentum of the atom field axis. nd hyperfine states of Na, where the states are num n on the magn

$$E_B^{HFS}(F = I \pm \frac{1}{2}, m_F) = -\frac{A}{4} + m_F g_K \mu_K B \pm \frac{\Delta E_0}{2} \sqrt{1 + \frac{4m_F}{2I + 1}x + x^2}$$
$$x = \frac{g_J \mu_B - g_K \mu_K}{\Delta E_0} \approx \frac{2\mu_B}{\Delta E_0} \qquad \Delta E_0 = A(I + \frac{1}{2})$$

I. Magets. J. Schmiedmaver

Degenerate Quantum gases 55 2011

$\Delta E_{0}_{\rm mayer}$ I. Mazets, J. Schmiedm

Magnetic Trapping

Trapping potential: $U_{mag} = -\vec{\mu} \cdot \vec{B}$ for $\mu = \mu_B$: 1Gauss $\rightarrow U_{mag} = 67 \mu K = 5.78 \times 10^{-9} \text{ eV}$

Magnetic states:

U_{mag} ≺0 U_{mag} ≻0 high field seeking (attracted to maximum) low field seeking (attracted to minimum)

Earnshaw Theorem:

No maximum of a static field (combination of fields) in a source free region

Magnetic traps are low field seeker traps, Atoms trapped in minimum of field but not in the ground state of potential (this would be a high field seeking state)

Avoid Zeros in the field (Majorana transitions) Quadrupole trap has a zero in the field at the centre !

Even at non zero weak field, there are Landau-Zener transitions possible.

 $-\mu_{\parallel}B_{ip}$ Rate for a harmonic minimum: $\gamma = \frac{\pi \omega}{2\sqrt{e}} e^{-\frac{\mu || - \gamma|}{\hbar \omega}}$ B_{ip} ... field at minimum ω ... trap frequency

Folie: 47/56

FIG. 1. Three magnetostatic trap configurations discussed in this work. (a) The magnetic quadrupole trap, consisting of two coils with opposing currents. (b) The "spherical hexapole" trap, with three wires on the surface of a sphere. With equal currents and the outer coils at 45°, B=0 at the origin. (c) The 10fe trap, ment from a two-coil int from a four-wire end views are shown which has a bias field and axial confin under rield" and transverse confinement fr quadrupole focusing field. Both side and end for the Ioffe trap.

Time Orbiting Potential trap

Abbildung 3.4: Funktionsprinzip einer TOP-Falle. Das lineare Potential a) Abbildung 3.4. Funktionsprincip einer tal versetzt b). Zeitgemittelt ergibt wird durch das homogene Feld in Rotation versetzt b). Zeitgemittelt ergibt sich in erster Näherung das in c) gezeigte harmonische Potential.

Configurations with non-Zero Field Minimum

Ioffe Pritchard Trap

FIG. 7. Contours of $|\mathbf{B}|$ for the loffe trap of Fig. 1(c) in the plane of the straight wires. The four straight wires lie on a circle of radius 1 cm, the coils of radius 1.5 cm are spaced by 4.5 cm, and all currents are 100 A. The minimum field at the origin is 14.3 G. Contours are shown at 10 G intervals up to 100 G.

z (cm) FIG. 8. Contours of $|\mathbf{B}|$ at 10 G intervals to 100 G in a plane midway between the straight wires for the loffe trap with parameters as given in Fig. 7. For a plane perpendicular to the one chosen, the contours will be as shown, but reflected in the z = 0 line.

Other Realizations

Z-Wire Trap (Innsbruck/HD)

Trapping field is created by superposition of the field of a current carrying Z-shaped Wire and a homogeneous bias field

:ets, J. Schmiedmayer Lecture I

FIG. 9. The baseball coil (heavy line) with an equipotential surface shown schematically at the center. The coil consists of four contiguous planar circular segments, each subtending an angle χ , on axes at angle $\alpha(-\alpha)$ with respect to the $\pm x$ ($\pm y$) directions. At closest approach, the coil comes within angle β of the z axis. For this figure, $\alpha=20^\circ$ (hence $\beta=21.6^\circ$), and the contour lines represent a 40-G surface for a baseball of radius $R_B=1$ cm, current $I_B=100$ A.

FIG. 10. Contours of $|\mathbf{B}|$ in the x-z plane of Fig. 9, with $\alpha = 20^{\circ} R_{B} = 1$ cm, and $I_{B} = 100$ A. Contours are drawn at 10-G intervals. At the center, $|\mathbf{B}|_{\min} = 9.1$ G, while the transverse and axial saddle-point thresholds are 72 and 106 G, respectively. Folic: 49/750

Evaporative cooling

Baseball Trap

Evaporative Cooling basic principles

Evaporative Cooling

H.F. Hess Phys.Rev.B 34 p R3476 (1986) K.B. Davis, M-O. Mewes, W. Ketterle Appl.Phys.B 60, p155 (1995) O.J.Luiten, M. Reynolds, J. Walraven Phys.Rev.A 53 p381 (1996)

General Scaling

Evaporative cooling happens at exponential scale Time scale is given by the thermalisation (collision) time (it takes about 5 collision for a truncated distribution to thermalise) Characteristic quantities are logarithmic derivatives A key parameter is $z = \frac{d(\ln T)}{d(\ln N)}$ (temperature decrease per particle loss) Evaporation is controlled by a potential depth ηkT

The density of states ($\rho(\epsilon)$) of trap pot. determines scaling. For power law potentials: $\rho(\epsilon)=A_{\rm pl} \epsilon^{1/2+\delta}$ square well: $\delta=0$, harmonic: $\delta=3/2$, linear: $\delta=3$

Exponential scaling for a d-dimensional potential U(r) $\sim r^{d/\delta}$

Ioffe-Pritchard trap: $\rho(\varepsilon) = A_{IP} (\varepsilon^3 + 2U_{IP} \varepsilon^2)$

αδ

 $1-\alpha\delta$ $1-\alpha(\delta+3/2)$ $1-\alpha(\delta-1/2)$

101

Schrittweise Verdampfungskühlung:

100

T,

p(E)

FIG. 5. Truncation parameter η (circles) and fraction of atoms remaining in trap N/N_0 (squares) as a function of reduced time t/t_0 after initiating evaporation from infinite temperature. Curves are obtained by integration of the differential equations resulting from the truncated Boltzmann approximation, symbols by fitting to the distribution obtained by numerical solution of the kinetic equation.

t/to 102

--- 0.4 1 0³

$\alpha_{\text{with}\overline{A(\ln N)}} = \frac{q + \kappa}{\delta + \frac{1}{2}} - 1$ average energy in potential $< \epsilon > = (\delta + 3/2) \text{ kT}$ RF induced evaporation

Lecture I

Number of atoms N Temperature T Volume V

Density n Phase space density D Elastic coll. Rate nov

Achieve faster and faster thermalsation with cooling
Collision rate has to grow:α(δ-1/2)>1Collisions:

 good collisions:
 elastic collisions

 bad collisions:
 inelastic coll., trap loss coll., etc ... limit the trap lifetime

 How many collisions per tapping time for run away evap.?

 Linear trap:
 > 25 collisions per lifetime

Harmonic trap > Degenerate Quantum gases 55 2011

>150 collisions per lifetime I. Mazets, J. Schmiedmayer

Abbildung 3.11: Radiofrequenz-induzierte Verdampfungskühlung in einem magnetischen Potential.

Folie: 52/56

 $T_f < T_i$

BEC in a Dilute System

example Na

Fig. 6. – Mean collision time for several elastic and inelastic processes in a sodium gas as a function of temperature at the critical density for Bose-Einstein condensation. The "BEC window," where the lifetime of the sample exceeds 0.1 seconds and the rate of elastic collisions is faster than 1 Hz is shaded. This figure uses a scattering length of 50 a_0 and rate coefficients for two- and three-body inelastic collisions of $10^{-16} \text{cm}^3 \text{s}^{-1}$ and $6 \cdot 10^{-30} \text{cm}^6 \text{s}^{-1}$ respectively.

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Lecture I

Folie: 53/56

Observing the BEC

Methods of imaging:

3 processes: absorption, emission, shifting the phase 3 methods: absorptive, fluorescence, dispersive imagi Description: complex index of refraction

$$n_{ref} = 1 + \frac{\sigma_0 n \lambda}{4\pi} \left[\frac{i}{1+\delta^2} - \frac{\delta}{1+\delta^2} \right] \quad \text{with } \delta = \frac{\omega - \omega_0}{\Gamma/2}$$

Transmission T and phase shift Φ

$$T = e^{-\widetilde{D}/2} = \exp(-\frac{1}{2}\frac{\widetilde{n}\sigma_0}{1+\delta^2}) \qquad \text{with } \widetilde{D} = \frac{\widetilde{n}\sigma_0}{1+\delta^2}$$
$$\Phi = -\delta\frac{\widetilde{D}}{2} = -\frac{\delta}{2}\frac{\widetilde{n}\sigma_0}{1+\delta^2}$$

Imaging dense clouds (D₀>100):

Optimal absorption imaging is at optical density of 1 Need large detuning but there is *refraction* at $|\delta| > 0$ For diffraction limited imaging we need a phase shift $\Phi < \pi/2$ For optical density 1 we need $|\delta| = (D_0)^{1/2}$ At this detuning the phase shift $\Phi \sim 0.5 (D_0)^{1/2}$ much too large For $\Phi < \pi/2$ we need $|\delta| = D_0/\pi$ Need phase contrast imaging

Non destructive imaging:

- Example of an image: 30×30 pixel with 100 photons each (10⁵ photons) This can be *'non perturbative'* for large condensates. Important figure of merit: ratio signal / heating
 - Absorption imaging: each photon gives one recoil energy
 - Dispersive imaging: there are more forward scattered photons than absorbed photons for large detuning the gain is $D_0/4$!
 - elastic scattered photons contribute not to heating if imaging is done in the trap and light pulse is longer that $1/v_{tran}$
 - in the trap and light pulse is longer that $1/\nu_{\rm trap}$ one can make many pictures of the condensate

For low density clouds there is no advantage of dispersive imaging Degenerate Quantum gases \$5 2011 I. Mazets, J. Schmiedmayer Lecture I

Fig. 7. – Dark-ground (A) and phase-contrast (B) imaging set-up. Probe light from the left is dispersively scattered by the atoms. In the Fourier plane of the lens, the unscattered light is filtered. In dark-ground imaging (A), the unscattered light is blocked, forming a dark-ground image on the camera. In phase-contrast imaging (B), the unscattered light is shifted by a phase plate (consisting of an optical flat with a $\lambda/4$ bump or dimple at the center), causing it to interfere with the scattered light in the image plane.

Lens setup (3µm resolution)

<section-header><section-header>

Expansion man "sieht" den Grndzustand und in der Expansion erkennt man die Unschärferelation Kurze Zeiten: sieht δχ Lange Zeiten: sieht δp kleines δx -> großes δp (schnelle Expansion) großes δx -> kleines δp (langsame Expansion)

Degenerate Quantum gases 55 2011

I. Mazets, J. Schmiedmayer

Lecture I

rolie: 56/56